满分5 > 初中数学试题 >

如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形. (1)若某函...

如图,正方形ABCD是一次函数yx+1图象的其中一个伴侣正方形.

1)若某函数是一次函数yx+1,求它的图象的所有伴侣正方形的边长;

2)若某函数是反比例函数,它的图象的伴侣正方形为ABCD,点D2m)(m2)在反比例函数图象上,求m的值及反比例函数解析式;

3)若某函数是二次函数yax2+ca≠0),它的图象的伴侣正方形为ABCDCD中的一个点坐标为(34).写出伴侣正方形在抛物线上的另一个顶点坐标,写出符合题意的其中一条抛物线解析式,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?.(本小题只需直接写出答案)

 

(1)正方形边长为;(2)m=1,y=;(3)D坐标为(﹣1,3);y=x2+ ;所求的任何抛物线的伴侣正方形个数为偶数. 【解析】 此题较为新颖,特别要注意审题和分析题意,耐心把题读完,知A、B为坐标轴上两点,C、D为函数图象上的两点:(1)先正确地画出图形,再利用正方形的性质确定相关点的坐标从而计算正方形的边长,注意思维的严密性. (2)因为ABCD为正方形,所以可作垂线得到等腰直角三角形,利用点D(2,m)的坐标表示出点C的坐标从而求解. (3)注意思维的严密性,抛物线开口既可能向上,也可能向下.当抛物线开口向上时,正方形的另一个顶点也是在抛物线上,这个点既可能在点(3,4)的左边,也可能在点(3,4)的右边,过点(3,4)向x轴作垂线,利用全等三角形确定线段的长即可确定抛物线上另一个点的坐标;当抛物线开口向下时也是一样地分为两种情况来讨论. (1)∵正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形. 当点A在x轴正半轴、点B在y轴负半轴上时, ∴AO=1,BO=1, ∴正方形ABCD的边长为 当点A在x轴负半轴、点B在y轴正半轴上时,设正方形ABCD的边长为a,得3a= ∴a= ,所以正方形边长为 ; (2)作DE、CF分别垂直于x、y轴, 知△ADE≌△BAO≌△CBF,此时,m<2,DE=OA=BF=m,OB=CF=AE=2﹣m ∴OF=BF+OB=2 ∴C点坐标为(2﹣m,2) ∴2m=2(2﹣m) 解得m=1, ∴反比例函数的解析式为y= ; (3)根据题意画出图形,如图所示: 过C作CF⊥x轴,垂足为F,过D作DE⊥CF,垂足为E, ∴△CED≌△DGB≌△AOB≌△AFC, ∵C(3,4),即CF=4,OF=3, ∴EG=3,DE=4,故DG=DE﹣GE=DE﹣OF=4﹣3=1,则D坐标为(﹣1,3);设过D与C的抛物线的解析式为:y=ax2+b, 把D和C的坐标代入得: , 解得 , ∴满足题意的抛物线的解析式为y=x2+; 同理可得D的坐标可以为:(7,﹣3);(﹣4,7);(4,1),对应的抛物线分别为y=x2+;y=x2+;y=x2+,所求的任何抛物线的伴侣正方形个数为偶数.
复制答案
考点分析:
相关试题推荐

张大叔要围成一个养鸡场,养鸡场的一边靠墙(墙长),另三边用总长为的篱笆恰好围成的鸡场,如图所示,设边的长为,长方形的面积为,求关系式及的取值范围.

 

查看答案

某大型超市将进价为 40 元的某种服装按 50 元售出时,每天可以售出 300 套,据市场调查发现,这种服装每提高 1 元,销售量就减少 5 套,如果超市将售价定为 x 元,请你求出每天销售利润 y 元与售价 x 元的函数表达式.

 

查看答案

如图,直线AB和抛物线的交点是A(0,-3)B(59),已知抛物线的顶点D的横坐标是2.

(1)求抛物线的解析式及顶点坐标;

(2)轴上是否存在一点C,与AB组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;

(3)在直线AB的下方抛物线上找一点P,连接PAPB使得△PAB的面积最大,并求出这个最大值.

 

查看答案

如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围. 

 

查看答案

如图,抛物线y=x2+bx+cy轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.

(1)求此抛物线的解析式.

(2)点Px轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.