满分5 > 初中数学试题 >

如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且...

如图,RtABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E.

(1)判断直线CD与⊙O的位置关系,并说明理由;

(2)若BE=4,DE=8,求AC的长.

 

(1)相切,证明见解析;(2)6. 【解析】 (1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明; (2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得(8﹣r)2=r2+42,推出r=3,由tan∠E=,推出,可得CD=BC=6,再利用勾股定理即可解决问题. (1)相切,理由如下, 如图,连接OC, ∵CB=CD,CO=CO,OB=OD, ∴△OCB≌△OCD, ∴∠ODC=∠OBC=90°, ∴OD⊥DC, ∴DC是⊙O的切线; (2)设⊙O的半径为r, 在Rt△OBE中,∵OE2=EB2+OB2, ∴(8﹣r)2=r2+42, ∴r=3,AB=2r=6, ∵tan∠E=, ∴, ∴CD=BC=6, 在Rt△ABC中,AC=.
复制答案
考点分析:
相关试题推荐

小丽老师家有一片80棵桃树的桃园,现准备多种一些桃树提高桃园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该桃园每棵桃树产桃(千克)与增种桃树()之间的函数关系如图所示.

(1)之间的函数关系式;

(2)在投入成本最低的情况下,增种桃树多少棵时,桃园的总产量可以达到6750千克?

(3)如果增种的桃树 ()满足: ,请你帮小丽老师家计算一下,桃园的总产量最少是多少千克,最多又是多少千克?

 

查看答案

为缓解交通拥堵,某区拟计划修建一地下通道,该通道一部分的截面如图所示(图中地面AD与通道BC平行,通道水平宽度BC8米,∠BCD=135°,通道斜面CD的长为6米,通道斜面AB的坡度i=1:

(1)求通道斜面AB的长;

(2)为增加市民行走的舒适度,拟将设计图中的通道斜面CD的坡度变缓,修改后的通道斜面DE的坡角为30°,求此时BE的长.

(答案均精确到0.1米,参考数据:≈1.41,≈2.24,≈2.45)

 

查看答案

如图,在四边形ABCD中,ADBCABBC,点EAB上,DEC90°

1)求证:ADE∽△BEC

2)若AD1BC3AE2,求AB的长.

 

查看答案

如图,ABO的直径,ACO的弦,∠ACB的平分线交O于点D,若AB10,求BD的长.

 

查看答案

RtABC中,∠C90°,c4a2,解这个直角三角形.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.