满分5 > 初中数学试题 >

如图,在△ABC中,∠C=90°,M是BC的中点,MD⊥AB于D,求证:.

如图,在△ABC中,∠C=90°MBC的中点,MD⊥ABD,求证:.

 

见解析 【解析】 连接AM得到三个直角三角形,运用勾股定理分别表示出AD²、AM²、BM²进行代换就可以最后得到所要证明的结果. 证明:连接MA, ∵MD⊥AB, ∴AD2=AM2-MD2,BM2=BD2+MD2, ∵∠C=90°, ∴AM2=AC2+CM2 ∵M为BC中点, ∴BM=MC. ∴AD2=AC2+BD2
复制答案
考点分析:
相关试题推荐

如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)求证:CD=BE;(2)已知CD=2,求AC的长;(3)求证:AB=AC+CD.

 

查看答案

如图,圆柱形玻璃杯的高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为多少?

 

查看答案

如图,已知AD是△ABC的高,∠BAC=60°,BD=2CD=2,试求AB的长.

 

查看答案

直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为(     )

A.     B.     C.     D.

 

查看答案

如图,圆柱底面半径为cm,高为9cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为(  

A. 12cm    B. cm    C. 15cm    D. cm

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.