学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:如图,小亮将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端1米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,如果设旗杆的高度为x米(滑轮上方的部分忽略不计),求x的值.
如图(1):已知在△ABC中,AB=AC,P是底边BC上一点,作PD⊥AB于D,PE⊥AC于E,BF⊥AC于F,求证:PD+PE=BF.
[思路梳理]:如图(2):连接AP,必有S△APB+S△APC=S△ABC,因为△ABP、△ACP和△ABC的底相等,所以三条高PD、PE和BF满足关系:PD+PE=BF.
[变式应用]:如图(3):已知在△ABC中,AB=AC,P是底边BC的反向延长线上一点,作PD⊥AB于D,PE⊥AC于E,BF⊥AC于F,求证:PE﹣PD=BF.
[类比引申]:如图(4):已知P是边长为4cm等边△ABC内部一点,作PD⊥BC于D,PE⊥AB于E,PF⊥AC于F,那么PD+PE+PF等于多少.
[联想拓展]:已知某三角形的三条边分别是5cm、12cm、13cm,在平面上有一点P,它到此三角形的三边的距离相等,则这个距离等于多少.
如图,有两根长杆隔河相对,一杆高3 m,另一杆高2 m,两杆相距5 m.两根长杆都与地面垂直,现两杆顶部各有一只鱼鹰,它们同时看到两杆之间的河面上E处浮出一条小鱼,于是同时以同样的速度飞下来夺鱼,结果两只鱼鹰同时叼住小鱼.求两杆底部距小鱼的距离各是多少米.(假设小鱼在此过程中保持不动)
如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒1cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).
(1)当点P在AC上,且满足PA=PB时,求出此时t的值;
(2)当点P在AB上,求出t为何值时,△BCP为等腰三角形.
如图,Rt△ABC,AC⊥CB,AC=15,AB=25,点D为斜边上动点。
(1)如图,过点D作DE⊥AB交CB于点E,连接AE,当AE平分∠CAB时,求CE;
(2)如图,在点D的运动过程中,连接CD,若△ACD为等腰三角形,求AD。
图1是围墙的一部分,上部分是由不锈钢管焊成的等腰三角形栅栏如图2,请你根据图2所标注的尺寸,求焊成一个等腰三角形栅栏外框BCD至少需要不锈钢管多少米(焊接部分忽略不计).