满分5 > 初中数学试题 >

(1)(操作发现) 如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC...

(1)(操作发现)

如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′,则∠ABB     

(2)(问题解决)

如图2,在等边三角形ABC内有一点P,且PA2PBPC1,求∠BPC的度数和等边三角形ABC的边长;

(3)(灵活运用)

如图3,在正方形ABCD内有一点P,且PABPPC1,求∠BPC的度数.

 

(1)∠AB′B=45°;(2)∠BPC=150°;AB=;(3)∠BPC=135°. 【解析】 (1)根据旋转角,旋转方向画出图形即可,只要证明△ABB′是等腰直角三角形即可; (2)将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°;过点B作BM⊥AP′,交AP′的延长线于点M,由∠MP′B=30°,求出BM,P′M,根据勾股定理即可求出答案; (3)将△BPC绕点B逆时针旋转90°得到△AEB,与(1)类似:可得:∠EBP=∠EBA+∠ABP=∠ABC=90°,求出∠BEP= (180°﹣90°)=45°,根据勾股定理的逆定理求出∠AP′P=90°,推出∠BPC=∠AEB=90°+45°=135°; (1)如图1所示,连接BB′,将△ABC绕点A按顺时针方向旋转90°, ∴AB=AB′,∠B′AB=90°, ∴∠AB′B=45°, (2)∵△ABC是等边三角形, ∴∠ABC=60°, 将△BPC绕点B顺时针旋转60°得出△ABP′,如图2, ∴AP′=CP=1,BP′=BP=,∠PBC=∠P′BA,∠AP′B=∠BPC, ∵∠PBC+∠ABP=∠ABC=60°, ∴∠ABP′+∠ABP=∠ABC=60°, ∴△BPP′是等边三角形, ∴PP′=,∠BP′P=60°, ∵AP′=1,AP=2, ∴AP′2+PP′2=AP2, ∴∠AP′P=90°,则△PP′A是 直角三角形; ∴∠BPC=∠AP′B=90°+60°=150°; 过点B作BM⊥AP′,交AP′的延长线于点M, ∴∠MP′B=30°,BM=, 由勾股定理得:P′M=, ∴AM=1+=, 由勾股定理得:AB=. (3)如图3,将△BPC绕点B逆时针旋转90°得到△AEB, 与(1)类似:可得:AE=PC=1,BE=BP=,∠BPC=∠AEB,∠ABE=∠PBC, ∴∠EBP=∠EBA+∠ABP=∠ABC=90°, ∴∠BEP=(180°﹣90°)=45°, 由勾股定理得:EP=2, ∵AE=1,AP=,EP=2, ∴AE2+PE2=AP2, ∴∠AEP=90°, ∴∠BPC=∠AEB=90°+45°=135°;
复制答案
考点分析:
相关试题推荐

今年最强台风山竹”913日在我国登陆,A市于上午800接到台风警报时,台风中心位于A市正南方向125kmB处,正以20km/h的速度沿BC方向移动.已知A市到BC的距离AD35km,在距离台风中心45km的区域内(包括45km)都将受到台风的影响.试问:A市何时受到台风影响,受到台风的影响的时间是多长?(≈1.4

 

查看答案

如图A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.

(1)现要在河岸CD上建一水厂向两村输送自来水.有两种方案备选.

方案1:水厂建在C点,修自来水管道到A村,再到B 村(即AC+AB).(如图)

方案2:作A点关于直线CD的对称点,连接CD M点,水厂建在M点处,分别向两村修管道AMBM. (即AM+BM) (如图)

从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工.请利用已有条件分别进行计算,判断哪种方案更合适.

(2)有一艘快艇Q从这条河中驶过,当快艇QCD中点G相距多远时,△ABQ为等腰三角形?直接写出答案,不要说明理由.

 

查看答案

已知:如图,在RtABC中,∠ACB90°AB5cmAC3cm,动点P从点B出发沿射线BC2cm/s的速度运动,设运动的时间为t秒,

1)当ABP为直角三角形时,求t的值:

2)当ABP为等腰三角形时,求t的值.

(本题可根据需要,自己画图并解答)

 

查看答案

学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:如图,小亮将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端1米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,如果设旗杆的高度为x(滑轮上方的部分忽略不计),求x的值.

 

查看答案

如图(1):已知在ABC中,ABACP是底边BC上一点,作PDABDPEACEBFACF,求证:PD+PEBF

[思路梳理]:如图(2):连接AP,必有SAPB+SAPCSABC,因为ABPACPABC的底相等,所以三条高PDPEBF满足关系:PD+PEBF

[变式应用]:如图(3):已知在ABC中,ABACP是底边BC的反向延长线上一点,作PDABDPEACEBFACF,求证:PEPDBF

[类比引申]:如图(4):已知P是边长为4cm等边ABC内部一点,作PDBCDPEABEPFACF,那么PD+PE+PF等于多少.

[联想拓展]:已知某三角形的三条边分别是5cm12cm13cm,在平面上有一点P,它到此三角形的三边的距离相等,则这个距离等于多少.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.