小明和同桌小聪在课后复习时,对练习册“目标与评定”中的一道思考题,进行了认真地探索.
(思考题)如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?
(1)请你将小明对“思考题”的解答补充完整:
【解析】
设点B将向外移动x米,即BB1=x,
则A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=A1B12,
得方程___________________,解方程,得x1=____,x2=______________,∴点B将向外移动____米.
(2)解完“思考题”后,小聪提出了如下两个问题:
(问题一)在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?
(问题二)在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?
请你解答小聪提出的这两个问题.
如图,正方形网格中有△ABC.若每个小方格边长均为1,请你根据所学的知识解答下列问题:
(1)判断△ABC的形状,并说明理由;
(2)求△ABC中BC边上的高.
(1)(操作发现)
如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′,则∠AB′B= .
(2)(问题解决)
如图2,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1,求∠BPC的度数和等边三角形ABC的边长;
(3)(灵活运用)
如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1,求∠BPC的度数.
今年最强台风“山竹”9月13日在我国登陆,A市于上午8:00接到台风警报时,台风中心位于A市正南方向125km的B处,正以20km/h的速度沿BC方向移动.已知A市到BC的距离AD=35km,在距离台风中心45km的区域内(包括45km)都将受到台风的影响.试问:A市何时受到台风影响,受到台风的影响的时间是多长?(≈1.4)
如图A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.
(1)现要在河岸CD上建一水厂向两村输送自来水.有两种方案备选.
方案1:水厂建在C点,修自来水管道到A村,再到B 村(即AC+AB).(如图)
方案2:作A点关于直线CD的对称点,连接交CD 于M点,水厂建在M点处,分别向两村修管道AM和BM. (即AM+BM) (如图)
从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工.请利用已有条件分别进行计算,判断哪种方案更合适.
(2)有一艘快艇Q从这条河中驶过,当快艇Q与CD中点G相距多远时,△ABQ为等腰三角形?直接写出答案,不要说明理由.
已知:如图,在Rt△ABC中,∠ACB=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以2cm/s的速度运动,设运动的时间为t秒,
(1)当△ABP为直角三角形时,求t的值:
(2)当△ABP为等腰三角形时,求t的值.
(本题可根据需要,自己画图并解答)