满分5 > 初中数学试题 >

在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于...

在一条东西走向河的一侧有一村庄C,河边原有两个取水点AB,其中ABAC,由于某种原因,由CA的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点HAHB在一条直线上),并新修一条路CH,测得CB3千米,CH2.4千米,HB1.8千米.

1)问CH是否为从村庄C到河边的最近路?(即问:CHAB是否垂直?)请通过计算加以说明;

2)求原来的路线AC的长.

 

(1)CH是从村庄C到河边的最近路,理由见解析;(2)原来的路线AC的长为2.5千米. 【解析】 (1)根据勾股定理的逆定理解答即可; (2)根据勾股定理解答即可 (1)是, 理由是:在△CHB中, ∵CH2+BH2=(2.4)2+(1.8)2=9 BC2=9 ∴CH2+BH2=BC2 ∴CH⊥AB, 所以CH是从村庄C到河边的最近路 (2)设AC=x 在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4 由勾股定理得:AC2=AH2+CH2 ∴x2=(x﹣1.8)2+(2.4)2 解这个方程,得x=2.5, 答:原来的路线AC的长为2.5千米.
复制答案
考点分析:
相关试题推荐

小明和同桌小聪在课后复习时,对练习册目标与评定中的一道思考题,进行了认真地探索.

(思考题)如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?

(1)请你将小明对思考题的解答补充完整:

【解析】
设点
B将向外移动x米,即BB1=x,

A1B1=2.5,在RtA1B1C中,由B1C2+A1C2=A1B12

得方程___________________,解方程,得x1=____,x2=______________,∴点B将向外移动____米.

(2)解完思考题后,小聪提出了如下两个问题:

(问题一)在思考题中,将下滑0.4改为下滑0.9,那么该题的答案会是0.9米吗?为什么?

(问题二)在思考题中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?

请你解答小聪提出的这两个问题.

 

查看答案

如图,正方形网格中有ABC.若每个小方格边长均为1,请你根据所学的知识解答下列问题:

1)判断ABC的形状,并说明理由;

2)求ABCBC边上的高.

 

查看答案

(1)(操作发现)

如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′,则∠ABB     

(2)(问题解决)

如图2,在等边三角形ABC内有一点P,且PA2PBPC1,求∠BPC的度数和等边三角形ABC的边长;

(3)(灵活运用)

如图3,在正方形ABCD内有一点P,且PABPPC1,求∠BPC的度数.

 

查看答案

今年最强台风山竹”913日在我国登陆,A市于上午800接到台风警报时,台风中心位于A市正南方向125kmB处,正以20km/h的速度沿BC方向移动.已知A市到BC的距离AD35km,在距离台风中心45km的区域内(包括45km)都将受到台风的影响.试问:A市何时受到台风影响,受到台风的影响的时间是多长?(≈1.4

 

查看答案

如图A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.

(1)现要在河岸CD上建一水厂向两村输送自来水.有两种方案备选.

方案1:水厂建在C点,修自来水管道到A村,再到B 村(即AC+AB).(如图)

方案2:作A点关于直线CD的对称点,连接CD M点,水厂建在M点处,分别向两村修管道AMBM. (即AM+BM) (如图)

从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工.请利用已有条件分别进行计算,判断哪种方案更合适.

(2)有一艘快艇Q从这条河中驶过,当快艇QCD中点G相距多远时,△ABQ为等腰三角形?直接写出答案,不要说明理由.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.