满分5 > 初中数学试题 >

如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB...

如图,在△ABC中,AB3AC4BC5P为边BC上一动点,PEABEPFACFMEF中点,求AM的最小值.

 

AM的最小值是1.2. 【解析】 根据勾股定理的逆定理可以证明;根据直角三角形斜边上的中线等于斜边的一半,则,要求的最小值,即求的最小值;根据三个角都是直角的四边形是矩形,得四边形是矩形,根据矩形的对角线相等,得,则的最小值即为的最小值,根据垂线段最短,知:的最小值即等于直角三角形斜边上的高. ∵在△ABC中,AB=3,AC=4,BC=5, ∴AB2+AC2=BC2,即∠BAC=90°. 又∵PE⊥AB于E,PF⊥AC于F, ∴四边形AEPF是矩形, ∴EF=AP. ∵M是EF的中点, ∴, 当AP⊥BC时,AP的最小值即为直角三角形ABC斜边上的高, ∴AM的最小值是.
复制答案
考点分析:
相关试题推荐

RtABC中,∠C90°,∠B30°,AB10,点D是射线CB上的一个动点,△ADE是等边三角形,点FAB的中点,联结EF

(1)如图,当点D在线段CB上时,

求证:△AEF≌△ADC

联结BE,设线段CDx,线段BEy,求y关于x的函数解析式及定义域;

(2)当∠DAB15°时,求△ADE的面积.

 

查看答案

已知:如图,RtABC中,∠C90°,AC6AB10

(1)BC的长;

(2)有一动点P从点C开始沿CBA方向以1cm/s的速度运动到点A后停止运动,设运动时间为t秒;求:

t为几秒时,AP平分∠CAB

t为几秒时,△ACP是等腰三角形(直接写答案)

 

查看答案

已知△ABC中,BCmn(mn0)AC2ABm+n

(1)求证:△ABC是直角三角形;

(2)当∠A30°时,求mn满足的关系式.

 

查看答案

在一条东西走向河的一侧有一村庄C,河边原有两个取水点AB,其中ABAC,由于某种原因,由CA的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点HAHB在一条直线上),并新修一条路CH,测得CB3千米,CH2.4千米,HB1.8千米.

1)问CH是否为从村庄C到河边的最近路?(即问:CHAB是否垂直?)请通过计算加以说明;

2)求原来的路线AC的长.

 

查看答案

(1)(操作发现)

如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′,则∠ABB     

(2)(问题解决)

如图2,在等边三角形ABC内有一点P,且PA2PBPC1,求∠BPC的度数和等边三角形ABC的边长;

(3)(灵活运用)

如图3,在正方形ABCD内有一点P,且PABPPC1,求∠BPC的度数.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.