如图,公路PQ和公路MN交于点P,且∠NPQ=45°,公路PQ上有一所学校A,AP=80米,现有一拖拉机在公路MN上以10米∕秒的速度行驶,拖拉机行驶时周围100米以内会受到噪声的影响,请判断拖拉机在行驶过程中是否对学校会造成影响,并说明理由,如果造成影响,求出造成影响的时间.
由于大风,山坡上的一颗树甲被从A点处拦腰折断,如图所示,其树顶端恰好落在另一颗树乙的根部C处,已知AB=4米,BC=13米,两棵树的水平距离为12米,求这棵树原来的高度.
如图,在四边形ABCD中,AB∥CD,∠D=90°,若AD=3,AB=4,CD=8,点P为线段CD上的一动点,若△ABP为等腰三角形,求DP的长.
如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,求AM的最小值.
在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,联结EF.
(1)如图,当点D在线段CB上时,
①求证:△AEF≌△ADC;
②联结BE,设线段CD=x,线段BE=y,求y关于x的函数解析式及定义域;
(2)当∠DAB=15°时,求△ADE的面积.
已知:如图,Rt△ABC中,∠C=90°,AC=6,AB=10.
(1)求BC的长;
(2)有一动点P从点C开始沿C→B→A方向以1cm/s的速度运动到点A后停止运动,设运动时间为t秒;求:
①当t为几秒时,AP平分∠CAB;
②当t为几秒时,△ACP是等腰三角形(直接写答案).