下列从左到右的变形属于因式分解的是( )
A. 2a(a+1)=2a2+2a B. a2﹣6a+9=a(a﹣6)+9
C. a2+3a+2=(a+1)(a+2) D. a2﹣1=a(a﹣)
下列说法正确的是( )
A. -3是-9的平方根 B. 1的立方根是±1
C. 是的算术平方根 D. 4的负的平方根是-2
下列成语描述的事件为随机事件的是( )
A. 水涨船高 B. 守株待兔 C. 水中捞月 D. 缘木求鱼
阅读:如图1,在△ABC中,3∠A+∠B=180°,BC=8,AC=10,求AB的长.
小明的思路:如图2,作BE⊥AC于点E,在AC的延长线上取点D,使得DE=AE,连接BD,易得∠A=∠D,△ABD为等腰三角形,由3∠A+∠B=180°和∠A+∠ABC+∠BCA=180°,易得∠BCA=2∠A,△BCD为等腰三角形,依据已知条件可得AE和AB的长.
解决下列问题:
(1)图2中,AE= ,AB= ;
(2)在△ABC中,∠A,∠B,∠C的对边分别为a、b、c.如图3,当3∠A+2∠B=180°时,用含a,c式子表示b.
如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,
(1)试说明△ABC是等腰三角形;
(2)已知S△ABC=40cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒),
①若△DMN的边与BC平行,求t的值;
②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.
如图,在△ABC中,∠ACB=90°,BC=6cm,AC=8cm,点O为AB的中点,连接CO.点M在CA边上,从点C以1cm/秒的速度沿CA向点A运动,设运动时间为t秒.
(1)当∠AMO=∠AOM时,求t的值;
(2)当△COM是等腰三角形时,求t的值.