如图,抛物线经过A(-1,0),B(5,0),C(0,-)三点.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
一条单车道的抛物线形隧道如图所示.隧道中公路的宽度AB=8m,隧道的最高点C到公路的距离为6m.
(1)建立适当的平面直角坐标系,求抛物线的表达式;
(2)现有一辆货车的高度是4.4m,货车的宽度是2m,为了保证安全,车顶距离隧道顶部至少0.5m,通过计算说明这辆货车能否安全通过这条隧道.
.(6分) 已知二次函数的图象与y轴交于点A(0,-6),与x轴的一个交点坐标是B(-2,0).
(1)求二次函数的关系式,并写出顶点坐标;
(2)将二次函数图象沿x轴向左平移个单位长度,求所得图象对应的函数关系式.
已知关于x的方程x2-(2m+1)x+m²+m=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根.
如图所示,已知在△ABC中,∠B=90°,AB=6cm,BC=12cm,点Q从点A开始沿 AB边向点B以1cm/s的速度移动,点P从点B开始沿BC边向点C以2cm/s的速度移动.
(1)如果Q、P分别从A、B两点出发,那么几秒后,△PBQ的面积等于8cm2?
(2)在(1)中,△PBQ的面积能否等于10cm2?试说明理由.
解下列方程:(1);(2)