满分5 > 初中数学试题 >

某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该店决定降价销...

某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该店决定降价销售,市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.

(1)yx之间的函数关系式;

(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?

(3)若该网店每星期想要获得不低于6480元的利润,求此时售价的范围.

 

(1)y=﹣30x+2100;(2)每件售价定为55元时,每星期的销售利润最大,最大利润6750元;(3)该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件. 【解析】 (1) 每星期的销售量等于原来的销售量加上因降价而多销售的销售量, 代入即可求解函数关系式; (2) 根据利润=销售量(销售单价-成本) , 建立二次函数, 用配方法求得最大值. (3) 根据题意可列不等式, 再取等将其转化为一元二次方程并求解, 根据每星期的销售利润所在抛物线开口向下求出满足条件的x的取值范围, 再根据 (1) 中一元一次方程求得满足条件的x的取值范围内y的最小值即可. (1)y=300+30(60﹣x)=﹣30x+2100. (2)设每星期利润为W元, W=(x﹣40)(﹣30x+2100)=﹣30(x﹣55)2+6750. ∴x=55时,W最大值=6750. ∴每件售价定为55元时,每星期的销售利润最大,最大利润6750元. (3)由题意(x﹣40)(﹣30x+2100)≥6480,解得52≤x≤58, 当x=52时,销售300+30×8=540, 当x=58时,销售300+30×2=360, ∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.
复制答案
考点分析:
相关试题推荐

如图,抛物线经过A(-10),B50),C0,-)三点.

1)求抛物线的解析式;

2)在抛物线的对称轴上有一点P,使PAPC的值最小,求点P的坐标;

 

查看答案

一条单车道的抛物线形隧道如图所示.隧道中公路的宽度AB=8m,隧道的最高点C到公路的距离为6m.

(1)建立适当的平面直角坐标系,求抛物线的表达式;

(2)现有一辆货车的高度是4.4m,货车的宽度是2m,为了保证安全,车顶距离隧道顶部至少0.5m,通过计算说明这辆货车能否安全通过这条隧道.

 

查看答案

(6) 已知二次函数的图象与y轴交于点A(0,-6),与x轴的一个交点坐标是B(20)

(1)求二次函数的关系式,并写出顶点坐标;

(2)将二次函数图象沿x轴向左平移个单位长度,求所得图象对应的函数关系式.

 

查看答案

已知关于x的方程x2-(2m+1)x+m²+m=0.

(1)求证:方程恒有两个不相等的实数根;

(2)若此方程的一个根是1,请求出方程的另一个根.

 

查看答案

如图所示,已知在△ABC中,∠B=90°,AB=6cm,BC=12cm,点Q从点A开始沿 AB边向点B1cm/s的速度移动,点P从点B开始沿BC边向点C2cm/s的速度移动.

(1)如果Q、P分别从A、B两点出发,那么几秒后,△PBQ的面积等于8cm2

(2)在(1)中,△PBQ的面积能否等于10cm2?试说明理由.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.