如图,△ABC的顶点都是正方形网格中的格点,则sin∠ABC等于( )
A. B. C. D.
用配方法解方程x2﹣6x=3,配方正确的是( )
A. (x﹣3)2=0 B. (x﹣3)2=6 C. (x﹣3)2=9 D. (x﹣3)2=12
菱形具有而矩形不具有的性质是( )
A. 两组对边分别平行 B. 对角线相等
C. 对角线互相垂直 D. 两组对角分别相等
如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为( )
A. B. C. D.
某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.
打折前一次性购物总金额 | 优惠措施 |
不超过300元 | 不优惠 |
超过300元且不超过400元 | 售价打九折 |
超过400元 | 售价打八折 |
(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?
(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价﹣进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;
(3)在“五•一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销的活动.按上述优惠条件,若小王第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折的一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(通过计算求出所有符合要求的结果)
如图,在平面直角坐标系中,OA=2,OB=3,现同时将点A,B分别向上平移2个单位,再向右平移2个单位,分别得到点A,B的对应点C,D,连接AC,BD.
(1)求点C、D的坐标及四边形ABDC的面积;
(2)若点Q在线的CD上移动(不包括C,D两点).QO与线段AB,CD所成的角∠1与∠2如图所示,给出下列两个结论:①∠1+∠2的值不变;②的值不变,其中只有一个结论是正确的,请你找出这个结论,并求出这个值.
(3)在y轴正半轴上是否存在点P,使得S△CDP=S△PBO?如果有,试求出点P的坐标.