杨洋同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下,如图,AB∥OH∥CD,BO∶OD=4∶5.AC,BD相交于O,OD⊥CD垂足为D.已知AB=20米.请根据上述信息求标语CD的长度.
如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;
(1)以O为位似中心,在点O的同侧作△A1B1C1,使得它与原三角形的位似比为1∶2;
(2)将△ABC绕点O顺时针旋转90°得到△A2B2C2,并求出点A旋转的路径的长.
如图所示,△ABC是等边三角形,点D、E分别在BC、AC上,且CE=BD,BE、AD相交于点F.求证:
(1)△ABD≌△BCE;
(2)△AEF∽△ABE.
深圳市民中心广场上有旗杆如图①所示,某学校兴趣小组测量了该旗杆的高度,如图②,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为16米,落在斜坡上的影长CD为8米,AB⊥BC;同一时刻,太阳光线与水平面的夹角为45°.1米的标杆EF竖立在斜坡上的影长FG为2米,求旗杆的高度.
在边长为1的正方形网格中有A、B、C、D、E五个点,问△ABC与△ADE是否相似?为什么?由此,你还能找出图中相似的三角形吗?若能,请找出来,并说明理由.
如图,在△ABC中,AB=4,D是AB上的一点(不与点A、B重合),DE∥BC,交AC于点E,则的最大值为________.