如图①,在△ABC中,AC=BC,点D是线段AB上一动点,∠EDF绕点D旋转,在旋转过程中始终保持∠A=∠EDF,射线DE与边AC交于点M,射线DE与边BC交于点N,连接MN.
(1)找出图中的一对相似三角形,并证明你的结论;
(2)如图②,在上述条件下,当点D运动到AB的中点时,求证:在∠EDF绕点D旋转过程中,点D到线段MN的距离为定值.
如图1,在Rt△ABC中,∠ACB=90°,AC=10cm,BC=5cm,点P从点C出发沿线段CA以每秒2cm的速度运动,同时点Q从点B出发沿线段BC以每秒1cm的速度运动.设运动时间为t秒(0<t<5).
(1)填空:AB= cm;
(2)t为何值时,△PCQ与△ACB相似;
(3)如图2,以PQ为斜边在异于点C的一侧作Rt△PEQ,且,连结CE,求CE.(用t的代数式表示).
如图,在△ABC中,∠C=90°,AC=8cm,BC=6cm,点P从点A沿AC向C以2cm/s的速度移动,到C即停,点Q从点C沿CB向B以1cm/s的速度移动,到B就停.
(1)若P、Q同时出发,经过几秒钟S△PCQ=2cm2;
(2)若点Q从C点出发2s后点P从点A出发,再经过几秒△PCQ与△ACB相似.
如图:已知▱ABCD,过点A的直线交BC的延长线于E,交BD、CD于F、G.
(1)若AB=3,BC=4,CE=2,求CG的长;
(2)证明:AF2=FG×FE.
如图,△ABC的面积为12,BC与BC边上的高AD之比为3:2,矩形EFGH的边EF在BC上,点H,G分别在边AB、AC上,且HG=2GF.
(1)求AD的长;
(2)求矩形EFGH的面积.
在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2)延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x 轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2018个正方形的面积为_____.