如图,CD是△ABC的中线,CE是△ABC的高,若AC=9,BC=12,AB=15.
(1)求CD的长.
(2)求DE的长.
已知a,b满足|a﹣|++(c﹣4)2=0.
(1)求a,b,c的值;
(2)判断以a,b,c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.
如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.
在直角三角形中,两条直角边的长度分别为a和b,斜边长度为c,则a2+b2=c2,即两条直角边的平方和等于斜边的平方,此结论称为勾股定理.在一张纸上画两个同样大小的直角三角形ABC和A′B′C′,并把它们拼成如图所示的形状 (点C和A′重合,且两直角三角形的斜边互相垂直).请利用拼得的图形证明勾股定理.
写出如图格点△ABC各顶点的坐标,求出此三角形的周长.
如图,在边长为1的小正方形组成的网格中,四边形ABCD的四个顶点都在格点上,请按要求完成下列各题:
(1)线段AB的长为________,BC的长为________,CD的长为________;
(2)连接AC,通过计算说明△ACD和△ABC各是什么特殊三角形.