某住宅小区五月份1日至5如每天用水量变化情况如图所示,那么这5天平均每天用水量的中位数是( )
A. 28 B. 32 C. 34 D. 36
在我国玉树抗震救灾自愿捐款活动中,调查到了某校30名同学的捐款情况如下表:(单位:元)
则这所学校的同学捐款的平均数为( )元.
A. 10
B. 11
C. 15
D. 20
下列各组数据中,方差最小的是( )
A. 1,2,3,4,5 B. 2,3,4,5,6 C. 2,4,6,8,10 D. 3,3, 3.14,π,
如图,二次函数y=x2+bx+c的图象与x轴交于 A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.
(1)求b、c的值;
(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;
(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.
如图,抛物线y=x2+ x+c与x轴的负半轴交于点A,与y轴交于点B,连结AB,点C(6,)在抛物线上,直线AC与y轴交于点D.
(1)求c的值及直线AC的函数表达式;
(2)点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.
①求证:△APM∽△AON;
②设点M的横坐标为m,求AN的长(用含m的代数式表示).
如图,□ABCD的对角线交于点O,点E在边BC的延长线上,且OE=OB,连接DE.
(1)求证:△BDE是直角三角形;
(2)如果OE⊥CD,试判断△BDE与△DCE是否相似,并说明理由.