已知抛物线y1=ax2+bx+c(ab≠0)经过原点,顶点为A.
(1)若点A的坐标是(﹣2,﹣4),
①求抛物线的解析式;
②把抛物线在第三象限之间的部分图象记为图象G,若直线y=﹣x+n与图象G有两个不同的交点,求n的取值范围;
(2)若直线y2=ax+b经过点A,当1<x<2时,比较y1与y2的大小.
将边长为2的正方形ABCD与边长为2的正方形AEFG如图放置,AD与AE在同一直线上,AB与AG在同一直线上,连接DG、BE.
(1)求证:DG=BE;
(2)把正方形AEFG绕点A旋转,当点F恰好落在AB边所在的直线上时,求BE的长.
如图,二次函数y=﹣x2+bx+c的图象经过(2,0)、(0,8)两点.
(1)求二次函数的解析式;
(2)当x取何范围的值时,二次函数的图象位于x轴上方.
已知关于x的方程x2+5x﹣p2=0.
(1)求证:无论p取何值,方程总有两个不相等的实数根;
(2)设方程的两个实数根为x1、x2,当x1+x2=x1x2时,求p的值.
如图,利用一面墙(墙的长度不限),另三边用20米长的篱笆围成一个矩形场地.若围成矩形场地的面积为50米2,求矩形场地的长和宽.
如图,在边长为1的正方形网格中,△ABC的三个顶点均在格点上.
(1)画出△ABC绕点C逆时针旋转90°后的三角形,点A的对应点为A′,点B的对应点为B′,连接BB′;
(2)在(1)所画图形中,∠B′BC的度数是多少.