已知,在△ABC中,∠A=90°,AB=AC,D为BC的中点,E,F分别是AB,AC上的点,且BE=AF.
(1)请你判断△DEF形状,并说明理由;
(2)若BE=2cm,CF=4cm,求EF的长.
计算下列各式:(1)1﹣= ;(2)(1﹣)(1﹣)= ;(3)(1﹣)(1﹣)(1﹣)= ;
你能根据所学知识找到计算上面算式的简便方法吗?请你利用你找到的简便方法判断:
(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)…(1﹣)的值与的大小关系,并说明理由.
为培养学生养成良好的“爱读书,读好书,好读书”的习惯,我市某中学举办了“汉字听写大赛”,准备为获奖同学颁奖.在购买奖品时发现,一个书包和一本词典会花去48元,用124元恰好可以购买3个书包和2本词典.
(1)每个书包和每本词典的价格各是多少元?
(2)学校计划总费用不超过900元,为获胜的40名同学颁发奖品(每人一个书包或一本词典),求最多可以购买多少个书包?
如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(-3,2),B(-1,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180,画出旋转后对应的△A1B1C;
(2)平移△ABC,若A的对应点A2的坐标为(-5,-2),画出平移后的△A2B2C2;
(3)若将△A2B2C2绕某一点旋转可以得到△A1B1C,请直接写出旋转中心的坐标.
已知一次函数y=kx+b的图象经过点A(﹣2,0),B(m,﹣7),C(﹣,﹣3).
(1)求m的值;
(2)当x取什么值时,y>0?
已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.
(1)求证:△ABC是等腰三角形;
(2)判断点O是否在∠BAC的角平分线上,并说明理由.