16的平方根是( )
A. ±4 B. ±2 C. 4 D. ﹣4
直线AB、CD、EF相交于O,则∠1+∠2+∠3=( )
A. 90° B. 120° C. 180° D. 140°
在平面直角坐标系中,A(a,0),C(0,c)且满足:(a+6)2+=0,长方形ABCO在坐标系中(如图),点O为坐标系的原点.
(1)求点B的坐标.
(2)如图1,若点M从点A出发,以2个单位/秒的速度向右运动(不超过点O),点N从原点O出发,以1个单位/秒的速度向下运动(不超过点C),设M、N两点同时出发,在它们运动的过程中,四边形MBNO的面积是否发生变化?若不变,求其值;若变化,求变化的范围.
(3)如图2,E为x轴负半轴上一点,且∠CBE=∠CEB,F是x轴正半轴上一动点,∠ECF的平分线CD交BE的延长线于点D,在点F运动的过程中,请探究∠CFE与∠D的数量关系,并说明理由
某民营企业准备用14000元从外地购进A、B两种商品共600件,其中A种商品的成本价为20元,B种商品的成本价为30元.
(1)该民营企业从外地购得A、B两种商品各多少件?
(2)该民营企业计划租用甲、乙两种货车共6辆,一次性将A、B两种商品运往某城市,已知每辆甲种货车最多可装A种商品110件和B种商品20件;每辆乙种货车最多可装A种商品30件和B种商品90件,问安排甲、乙两种货车有几种方案?请你设计出具体的方案.
如图,在平面直角坐标系中,△PQR是△ABC经过某种变换后得到的图形,其中点A与点P,点B与点Q,点C与点R是对应的点,在这种变换下:
(1)直接写出下列各点的坐标
①A(____,_____)与P(_____,_____);B(_____,_____)与Q(______,_____);C(_____,______)与R(______,______)
②它们之间的关系是:______(用文字语言直接写出)
(2)在这个坐标系中,三角形ABC内有一点M,点M经过这种变换后得到点N,点N在三角形PQR内,其中M、N的坐标M(,6(a+b)﹣10),N(1﹣,4(b﹣2a)﹣6),求关于x的不等式﹣>b﹣1的解集.
为了丰富学生课余生活,某区教育部门准备在七年级开设兴趣课堂.为了了解学生对音乐、书法、球类、绘画这四个兴趣小组的喜爱情况,在全区进行随机抽样调查,并根据收集的数据绘制了下面两幅统计图(信息不完整),请根据图中提供的信息,解答下面的问题:
(1)此次共调查了多少名同学?
(2)将条形图补充完整,并计算扇形统计图中音乐部分的圆心角的度数
(3)如果该区七年级共有2000名学生参加这4个课外兴趣小组,而每名教师最多只能辅导本组的20名学生,则绘画兴趣小组至少需要准备多少名教师?