研究发现,学生对概念的接受能力y与提出概念所用的时间x(分钟)之间有如下关系:
提出概念所用的时间x(分钟) | 2 | 5 | 7 | 10 | 12 | 13 | 14 | 17 | 20 |
对概念的接受能力y | 47.8 | 53.5 | 56.3 | 59 | 59.8 | 59.9 | 59.8 | 58.3 | 55 |
根据以上信息,回答下列问题:
(1)当提出概念所用的时间为10分钟时,学生的接受能力约是多少?
(2)当提出概念所用的时间为多少分钟时,学生的接受能力最强?
(3)在什么时间范围内,学生的接受能力在逐渐增强?什么时间范围内,学生的接受能力在逐渐增强减弱?
如图,某小区规划在长(3x+4y)米,宽(2x+3y)米的长方形的场地上,修建1横2纵三条宽为x米的甬道,其余部分为绿地,求:
(1)甬道的面积;
(2)绿地的面积(结果化简)
如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上,∠A=50°,∠F=40°.
(1)求△DBE各内角的度数;
(2)若AD=16,BC=10,求AB的长.
如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数。
如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB,交BD于O,且∠EOD+∠OBF=180°,∠F=∠G.求证:DG∥CE.
某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示,根据图象解答下列问题:
(1)在这个变化过程中,自变量、因变量是什么?
(2)洗衣机的进水时间是多少分钟?清洗时洗衣机的水量是多少升?
(3)时间为10分钟时,洗衣机处于哪个过程?