在平面直角坐标系中,点A点B已知满足.
(1)点A的坐标为_________,点B的坐标为__________;
(2)如图1,点E为线段OB上一点,连接AE,过A作AF⊥AE,且AF=AE,连接BF交轴于点D,若点D(-1,0),求点E的坐标;
(3)在(2)的条件下,如图2,过E作EH⊥OB交AB于H,点M是射线EH上一点(点M不在线段EH上),连接MO,作∠MON=45°,ON交线段BA的延长线于点N,连接MN,探究线段MN与OM的关系,并说明理由。
阅读下面材料:小明遇到这样一个问题:如图1,四边形ABCD中,AB=AD,∠ABC+∠ADC=180°,点M、N分别在边BC、CD上,且∠MAN=∠BAD.求证:小明充分利用AB=AD,∠ABC与∠ADC互补的条件,将△ABM绕点A逆时针旋转∠BAD的度数,如图2,从而将问题解决。根据阅读材料,证明:用学过的知识或参考小明的方法,解决下面的问题:
“绿水青山就是金山银山”,高新区凌水河治理工程正式启动,若由甲工程队单独完成需10个月;若由甲、乙两工程队合做4个月后,剩下工程由乙工程队再做5个月可以完成。(1)乙工程队单独完成这项工程需几个月的时间?
(2)已知甲工程队每月施工费用为15万元,比乙工程队多6万元,按要求该工程总费用不超过141万元,工程必须在一年内竣工(包括12个月).为了确保经费和工期,采取甲、乙工程队同时开工,甲工程队做个月,乙工程队做个月(均为整数)分工合作的方式施工,问有哪几种施工方案?
如图,在Rt△ABC中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P点作PF⊥AD交BC的延长线于点F,交AC于点H.(1)∠APB的度数为_______°;(2)求证:△ABP≌△FBP;(3)求证:AH+BD=AB.
(1)分解下列因式,将结果直接写在横线上:
x2+4x+4= ,16x2+24x+9= ,9x2﹣12x+4=
(2)观察以上三个多项式的系数,有42=4×1×4,242=4×16×9,(﹣12)2=4×9×4,于是小明猜测:若多项式ax2+bx+c(a>0)是完全平方式,则实数系数a、b、c一定存在某种关系.
①请你用数学式子表示a、b、c之间的关系;
②解决问题:若多项式x2﹣2(m﹣3)x+(10﹣6m)是一个完全平方式,求m的值.
小明与小华同时开始攀登一座1800米高的山,小明比小华早30分钟到达顶峰,已知小明的平均攀登速度是小华的1.2倍.求小明和小华的平均攀登速度.