已知:如图,在半径为的中,、是两条直径,为的中点,的延长线交于点,且,连接。.
(1)求证:;
(2)求的长.
【答案】(1)证明见解析; (2)EM=4.
【解析】
(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;
(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度.
(1)连接AC、EB.
∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB,∴,∴AM•BM=EM•CM;
(2)∵DC是⊙O的直径,∴∠DEC=90°,∴DE2+EC2=DC2.
∵DE,CD=8,且EC为正数,∴EC=7.
∵M为OB的中点,∴BM=2,AM=6.
∵AM•BM=EM•CM=EM•(EC﹣EM)=EM•(7﹣EM)=12,且EM>MC,∴EM=4.
【点睛】
本题考查了相似三角形的判定和性质、圆周角定理、勾股定理的知识点,解答本题的关键是根据已知条件和图形作辅助线.
【题型】解答题
【结束】
21
为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,合肥市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)请把折线统计图补充完整;
(2)求扇形统计图中,网络文明部分对应的圆心角的度数;
(3)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.
如图,用细线悬挂一个小球,小球在竖直平面内的A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,∠AOB=66°,求细线OB的长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)
【答案】15cm
【解析】
试题设细线OB的长度为xcm,作AD⊥OB于D,证出四边形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在Rt△AOD中,由三角函数得出方程,解方程即可.
试题解析:设细线OB的长度为xcm,作AD⊥OB于D,如图所示:
∴∠ADM=90°,
∵∠ANM=∠DMN=90°,
∴四边形ANMD是矩形,
∴AN=DM=14cm,
∴DB=14﹣5=9cm,
∴OD=x﹣9,
在Rt△AOD中,cos∠AOD=,
∴cos66°==0.40,
解得:x=15,
∴OB=15cm.
【题型】解答题
【结束】
20
已知:如图,在半径为的中,、是两条直径,为的中点,的延长线交于点,且,连接。.
(1)求证:;
(2)求的长.
观察下面的点阵图和相应的等式,探究其中的规律:
(1)认真观察,并在④后面的横线上写出相应的等式.
①1=1 ②1+2==3 ③1+2+3==6 ④ …
(2)结合(1)观察下列点阵图,并在⑤后面的横线上写出相应的等式.
1=12②1+3=22③3+6=32④6+10=42⑤ …
(3)通过猜想,写出(2)中与第n个点阵相对应的等式 .
【答案】(1)10;(2)见解析;(3)
【解析】试题(1)根据①②③观察会发现第四个式子的等号的左边是1+2+3+4,右边分子上是(1+4)×4,从而得到规律;
(2)通过观察发现左边是10+15,右边是25即5的平方;
(3)过对一些特殊式子进行整理、变形、观察、比较,归纳出一般规律.
试题解析:(1)根据题中所给出的规律可知:1+2+3+4==10;
(2)由图示可知点的总数是5×5=25,所以10+15=52.
(3)由(1)(2)可知
点睛:主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.
【题型】解答题
【结束】
19
如图,用细线悬挂一个小球,小球在竖直平面内的A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,∠AOB=66°,求细线OB的长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)
如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点的坐标.
(2)画出△A1B1C1先向左平移3个单位长度,再向上平移4个单位长度得到的△A2B2C2并写出点的坐标.
【答案】(1)(2,−4); (2)(−4,2).
【解析】
(1)作出各点关于x轴的对称点,再顺次连接,写出点A1坐标即可;
(2)根据图形平移的性质画出△A2B2C2,并写出点A2的坐标即可.
(1)如图所示,A1(2,−4);
故答案为:(2,−4);
(2)如图所示,A2(−1,0).
故答案为:(−1,0).
【点睛】
本题考查的知识点是作图-平移变换及作图-轴对称变换,解题的关键是熟练的掌握作图-平移变换及作图-轴对称变换.
【题型】解答题
【结束】
18
观察下面的点阵图和相应的等式,探究其中的规律:
(1)认真观察,并在④后面的横线上写出相应的等式.
①1=1 ②1+2==3 ③1+2+3==6 ④ …
(2)结合(1)观察下列点阵图,并在⑤后面的横线上写出相应的等式.
1=12②1+3=22③3+6=32④6+10=42⑤ …
(3)通过猜想,写出(2)中与第n个点阵相对应的等式 .
《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何”.大意是说,已知甲、乙二人同时从同一地
点出发,甲的速度为7,乙的速度为3.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?
【答案】甲走了24.5步,乙走了10.5步
【解析】试题设经x秒二人在B处相遇,然后利用勾股定理列出方程即可求得甲乙两人走的步数.
试题解析:设经x秒二人在B处相遇,这时乙共行AB=3x,
甲共行AC+BC=7x,
∵AC=10,
∴BC=7x﹣10,
又∵∠A=90°,
∴BC2=AC2+AB2,
∴(7x﹣10)2=102+(3x)2,
∴x=0(舍去)或x=3.5,
∴AB=3x=10.5,
AC+BC=7x=24.5,
答:甲走了24.5步,乙走了10.5步.
【题型】解答题
【结束】
17
如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点的坐标.
(2)画出△A1B1C1先向左平移3个单位长度,再向上平移4个单位长度得到的△A2B2C2并写出点的坐标.
计算:()﹣2﹣+(﹣4)0﹣cos45°.
【答案】1
【解析】
先分别根据负整数指数幂及0指数幂的计算法则、数的开方法则、特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.
原式=4﹣3+1=2﹣1=1.
【点睛】
本题考查了实数的运算,熟知负整数指数幂及0指数幂的计算法则、数的开方法则、特殊角的三角函数值是解答此题的关键.
【题型】解答题
【结束】
16
《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何”.大意是说,已知甲、乙二人同时从同一地
点出发,甲的速度为7,乙的速度为3.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?