已知二次函数的图象与x轴交于A、B两点,顶点为C.
当A、B两点的坐标分别为,时,求a、b满足的关系式.
若该函数图象的对称轴是直线,且为等腰直角三角形.
①求该二次函数的解析式用只含a的式子表示;
②在范围内任取三个自变量、、,所对应的三个函数值分别为、、,若以、、为长度的三条线段能围成三角形,求a的取值范围.
(2016·资阳中考)如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y= (k≠0,x>0)过点D.
(1)求双曲线的解析式;
(2)作直线AC交y轴于点E,连接DE,求△CDE的面积.
如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE.
(1)求∠DCE的度数;
(2)若AB=4,CD=3AD,求DE的长.
如图,在平面直角坐标系中,已知点、、.
请在图中作出经过点A、B、C三点的,并写出圆心M的坐标;
若,试判断直线BD与的位置关系,并说明理由.
如图,在⊙O中,半径OA⊥弦BC,点E为垂足,点D在优弧上.
(1)若∠AOB=56°,求∠ADC的度数;
(2)若BC=6,AE=1,求⊙O的半径.
写字是学生的一项基本功,为了了解某校学生的书写情况,随机对该校部分学生进行测试,测试结果分为A,B,C,D四个等级.根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息,回答以下问题:
(1)把条形统计图补充完整;
(2)若该校共有2000名学生,估计该校书写等级为“D级”的学生约有 人;
(3)随机抽取了4名等级为“A级”的学生,其中有3名女生,1名男生,现从这4名学生中任意抽取2名,用列表或画树状图的方法,求抽到的两名学生都是女生的概率.