已知:如图,直线a∥b,直线c与直线a、b分别相交于C、D两点,直线d与直线a、b分别相交于A、B两点,点P在直线AB上运动(不与A、B两点重合).
(1)如图1,当点P在线段AB上运动时,总有:∠CPD=∠PCA+∠PDB,请说明理由;
(2)如图2,当点P在线段AB的延长线上运动时,∠CPD、∠PCA、∠PDB之间有怎样的数量关系,并说明理由;
(3)如图3,当点P在线段BA的延长线上运动时,∠CPD、∠PCA、∠PDB之间又有怎样的数量关系(只需直接给出结论)?
如图所示的是用四块完全相同的小长方形拼成的一个“回形”正方形.
(1)用两个不同的代数式表示图中的阴影部分的面积,你能得到怎样的等式?
(2)请验证你所得等式的正确性;
(3)利用(1)中的结论计算:已知(a+b)2=4,ab=,求a﹣b.
某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):
x(人) | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | … |
y(元) | ﹣3000 | ﹣2000 | ﹣1000 | 0 | 1000 | 2000 | … |
(1)在这个变化过程中,______是自变量,______是因变量;
(2)观察表中数据可知,每月乘客量达到_______人以上时,该公交车才不会亏损;
(3)请你估计当每月乘车人数为3500人时,每月利润为多少元?
如图,直线AB、CD、EF相交于点O,OG⊥CD.
(1)已知∠BOD=36°,求∠AOG的度数;
(2)如果OC是∠AOE的平分线,那么OG是∠AOF的平分线吗?说明理由.
如图,AB∥CD,若∠ABE=120°,∠DCE=35°,求∠BEC的度数.
已知6x﹣5y=﹣10,求[(﹣2x+y)(﹣2x﹣y)﹣(2x﹣3y)2]÷4y的值.