的值等于
A. 3 B. C. D.
已知等腰Rt△ABC,∠BAC=90°,AB=AC,点D为△ABC内部一点,连接AD、BD、CD,点H为BD中点,连接AH,且∠BAH=∠ACD.
(1)如图1,若∠ADB=90°,求证:∠DAH=45°;
(2)如图2,若∠ADB<90°,(1)问中的结论是否成立,若成立,请证明;若不成立,请说明理由.
阅读下面材料:小明遇到这样一个问题:
如图1,在△ABC中,∠B=2∠C,AD⊥BC于点D,求证:BC=AB+2BD.
小明利用条件AD⊥BC,在CD上截取DH=BD,如图2,连接AH,既构造了等腰△ABH,又得到BH=2BD,从而命题得证。
(1)根据阅读材料,证明:BC=AB+2BD;
(2)参考小明的方法,解决下面的问题:
如图3,在△ABC中,∠BAC=90°,∠ABD=∠BCE,∠ABC=∠DCE,请探究AD与BE的数量关系,并说明理由。
如图,某小区有一块长为米、宽为米的长方形地块该长方形地块。该长方形地块正中间是一个长为米的长方形,四个角是大小相同的正方形,该小区计划
将如图阴影部分进行绿化,对四个角的四个正方形采用A绿化方案,对正中间的长方形采用B绿化方案.
(1)采用A绿化方案的每个正方形边长是多少米,采用B绿化方案的长方形另一边长是多少米(用含的代数式表示);
(2)若采用A、B两种绿化方案的总造价相同,均为2700元,请你判断哪种方案单位面积造价高?并说明理由.
如图1,△ABC是等边三角形,点D是BC上一点,点E在CA的延长线上,连结EB、ED,且EB=ED.
(1)求证:∠DEC=∠ABE;
(2)点D关于直线EC的对称点为M,连接EM、BM:
①依题意将图2补全;
②求证:EB=BM.
(观察)方程的解是的解是;
的解是的解是
(发现)根据你的阅读回答问题:
(1)的解为_______;
(2)关于的方程的解为_______(用含的代数式表示),并利用“方程的解的概念”验证.
(类比)
(3)关于的方程的解为_________(用含的代数式表示).