满分5 > 初中数学试题 >

如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交...

如图,一次函数ykx+bk0)与反比例函数ya0)的图象在第一象限交于AB两点,A点的坐标为(m4),B点的坐标为(32),连接OAOB,过BBDy轴,垂足为D,交OAC.若OCCA

1)求一次函数和反比例函数的表达式;

2)求△AOB的面积;

3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.

 

(1)y=,y=﹣x+6;(2).(3)E坐标为(﹣,2)或(,2)或(,2)或(,2). 【解析】 (1)先利用待定系数法求出反比例函数解析式,进而确定出点A的坐标,再用待定系数法求出一次函数解析式; (2)过点A作AF⊥x轴于F交OB于G,先求出OB的解析式,进而求出AG,用三角形的面积公式即可得出结论. (3)分三种情形分别讨论求解即可解决问题; 【解析】 (1)∵点B(3,2)在反比例函数y=的图象上, ∴a=3×2=6, ∴反比例函数的表达式为y=, ∵点A的纵坐标为4, ∵点A在反比例函数y=图象上, ∴A(,4), ∴,∴, ∴一次函数的表达式为y=﹣x+6; (2)如图1,过点A作AF⊥x轴于F交OB于G, ∵B(3,2), ∴直线OB的解析式为y=x, ∴G(,1), A(,4), ∴AG=4﹣1=3, ∴S△AOB=S△AOG+S△ABG=×3×3=. (3)如图2中, 当∠AOE1=90°时,∵直线AC的解析式为y=x, ∴直线OE1的解析式为y=﹣x, 当y=2时,x=﹣, ∴E1(﹣,2). 当∠OAE2=90°时, 直线OE1平行直线OE2 设直线OE2的解析式为y=﹣x+b, ∴直线过点A(,4),则b= ∴直线OE2的解析式为y=﹣x+, 当y=2时,x=, ∴E2(,2). 当∠OEA=90°时, ∵A(,4),∴OA= ∴AC=OC=CE=, ∵C(,2), ∴可得E3(,2),E4(,2), 综上所述,满足条件的点E坐标为(﹣,2)或(,2)或(,2)或(,2).
复制答案
考点分析:
相关试题推荐

已知抛物线y=(m1x2+m2x1x轴相交于AB两点,且AB2,求m的值.

 

查看答案

如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BDCD,过点DBC的平行线,与AB的延长线相交于点P

1)求证:PD是⊙O的切线;

2)求证:△PBD∽△DCA

3)当AB6AC8时,求线段PB的长.

 

查看答案

如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点BCE在同一水平直线上).已知AB80mDE10m,求障碍物BC两点间的距离.(结果保留根号)

 

查看答案

如图,在正方形ABCD中,EF分别是边ADCD上的点,AEEDDFDC14,连接EF并延长交BC的延长线于点G

1)求证:△ABE∽△DEF

2)若正方形的边长为10,求BG的长.

 

查看答案

某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:

①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:

②该产品90天内每天的销售价格与时间(第x天)的关系如下表:

1)求出第10天日销售量;

2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格﹣每件成本))

3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.