阅读以下材料:
利用整式的乘法知识,我们可以证明以下有趣的结论:“将两个有理数的平方和与另两个有理数的平方和相乘,得到的乘积仍然可以表示成两个有理数的平方和”
设a,b,c,d为有理数,则
(a2+b2)(c2+d2)
=a2c2+a2d2+b2c2+b2d2
=(a2c2+2abcd+b2d2)+(a2d2﹣2abcd+b2c2)
=(ac+bd)2+(ad﹣bc)2
请你解决以下问题
(1)填空:(a2+b2)(c2+d2)=(ac﹣bd)2+( )2
(2)根据阅读材料,
130=13×10=(22+32)(12+32)=(2×1+3×3)2+(2×3﹣3×1)2=112+32
仿照这个过程将650写成两个正整数的平方和
(3)将20182018表示成两个正整数的平方和(直接写出一种答案即可).
如图,CN是等边△ABC的外角∠ACM内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.
(1)依题意补全图形;
(2)若∠ACN=α,求∠BDC的大小(用含α的式子表示);
(3)用等式表示线段PB,PC与PE之间的数量关系,并证明.
如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.
(1)求证:OE是CD的垂直平分线.
(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.
已知x2+x﹣1=0,求2x3﹣x2﹣5x+7的值.
已知x+y=8,xy=12,求:
①x2y+xy2;
②x2﹣xy+y2;
③x﹣y的值.
如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.