已知在△ABC中,三边长a,b,c满足等式a2﹣21b2﹣c2+4ab+10bc=0,请你探究a,b,c之间满足的等量关系,并说明理由.
(2+1)(22+1)(23+1)(24+1)(28+1)+1= .
等腰三角形两腰上的高所在直线相交所成的锐角为80°,则顶角的度数为 .
若实数x,y满足(x2+y2)(x2+y2﹣4)=5,则x2+y2= .
阅读以下材料:
利用整式的乘法知识,我们可以证明以下有趣的结论:“将两个有理数的平方和与另两个有理数的平方和相乘,得到的乘积仍然可以表示成两个有理数的平方和”
设a,b,c,d为有理数,则
(a2+b2)(c2+d2)
=a2c2+a2d2+b2c2+b2d2
=(a2c2+2abcd+b2d2)+(a2d2﹣2abcd+b2c2)
=(ac+bd)2+(ad﹣bc)2
请你解决以下问题
(1)填空:(a2+b2)(c2+d2)=(ac﹣bd)2+( )2
(2)根据阅读材料,
130=13×10=(22+32)(12+32)=(2×1+3×3)2+(2×3﹣3×1)2=112+32
仿照这个过程将650写成两个正整数的平方和
(3)将20182018表示成两个正整数的平方和(直接写出一种答案即可).
如图,CN是等边△ABC的外角∠ACM内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.
(1)依题意补全图形;
(2)若∠ACN=α,求∠BDC的大小(用含α的式子表示);
(3)用等式表示线段PB,PC与PE之间的数量关系,并证明.