抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A、B两库的路程和运费如下表:(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)
| 路程(千米) | 运费(元/吨•千米) | ||
甲库 | 乙库 | 甲库 | 乙库 | |
A库 | 20 | 15 | 12 | 12 |
B库 | 25 | 20 | 10 | 8 |
(1)若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式;
(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?
如图,直线l1的解析式为y=2x﹣2,直线l1与x轴交于点D,直线l2:y=kx+b与x轴交于点A,且经过点B,直线l1、l2交于点C(m,2).
(1)求m;
(2)求直线l2的解析式;
(3)根据图象,直接写出1<kx+b<2x﹣2的解集.
在如图的直角坐标系中,画出函数y=﹣2x+3的图象,并结合图象回答下列问题:
(1)y的值随x值的增大而 (填“增大”或“减小”);
(2)图象与x轴的交点坐标是 ;图象与y轴的交点坐标是 ;
(3)当x 时,y<0;
(4)直线y=﹣2x+3与两坐标轴所围成的三角形的面积是: .
如图,AD是等腰△ABC底边BC上的高,点O是AC中点,延长DO到E,使AE∥BC,连接AE.
(1)求证:四边形ADCE是矩形;
(2)①若AB=17,BC=16,则四边形ADCE的面积= .
②若AB=10,则BC= 时,四边形ADCE是正方形.
如图,在四边形ABCD中,AD∥BC,对角线AC与BD相交于点O,AC平分∠BAD,请你再添一个什么条件,就能推出四边形ABCD是菱形,并给出证明.
如图,在△ABC中,AD是BC边的中线,E是AD的中点,过A点作AF∥BC交BE的延长线于点F,连结CF.求证:四边形ADCF是平行四边形.