如图,在平面直角坐标系xOy中,双曲线y=过▱ABCD的顶点B,D.点D的坐标为(2,1),点A在y轴上,且AD∥x轴,S▱ABCD=6.
(1)填空:点A的坐标为 ;
(2)求双曲线和AB所在直线的解析式.
如图1所示,将一个边长为2的正方形ABCD和一个长为2,宽为1的矩形CEFD拼在一起,构成一个大的矩形ABEF,现将小矩形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为α.
(1)当点D′恰好落在EF边上时,求旋转角α的值;
(2)如图2,G为BC中点,且0°<α<90°,求证:GD′=E′D.
已知关于x的一元二次方程(m+1)x2+2mx+m﹣3=0总有实数根.
(1)求m的取值范围;
(2)在(1)的条件下,当m在取值范围内取最小整数时,求原方程的解.
如图,有3张背面相同的纸牌A,B,C,其正面分别画有三个不同的几何图形,
(1)求摸出一张纸片是中心对称图形的概率;
(2)将这3张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.求摸出两张牌面图形既是轴对称图形又是中心对称图形的纸牌的概率,(用树状图或列表法求解,纸牌可用A,B,C表示)
如图,在Rt△ABC中,∠ACB=90°.
(1)作⊙O,使它过点A、B,C(尺规作图,保留作图痕迹,不写作法);
(2)在(1)所作的圆中,若AC=1,AB=2,求出劣弧 的长.
如图,若篱笆(虚线部分)的长度16m,当所围成矩形ABCD的面积是60m2,求矩形的长是多少?