下列计算正确的是( )
A. 3a+2b=5ab B. 5a2-2a2=3
C. 7a+a=7a2 D. 2a2b-4a2b=-2a2b
的相反数是( )
A. B. C. D.
如图,抛物线y=﹣(x+1)(x﹣3)与x轴分别交于点A、B(点A在B的右侧),与y轴交于点C,⊙P是△ABC的外接圆.
(1)直接写出点A、B、C的坐标及抛物线的对称轴;
(2)求⊙P的半径;
(3)点D在抛物线的对称轴上,且∠BDC>90°,求点D纵坐标的取值范围;
(4)E是线段CO上的一个动点,将线段AE绕点A逆时针旋转45°得线段AF,求线段OF的最小值.
有一家网红私人定制蛋糕店,她家的蛋糕经常供不应求,但每日最多只能做40只蛋糕,且每日做好的蛋糕全部订售一空.已知做x只蛋糕的成本为R元,售价为每只P元,且R、P与x的关系式为R=500+30x,P=170﹣2x,设她家每日获得的利润为y元.
(1)销售x只蛋糕的总售价为 元(用含x的代数式表示),并求y与x的函数关系式;
(2)当每日做多少只蛋糕时,每日获得的利润为1500元?
(3)当每日做多少只蛋糕时,每日所获得的利润最大?最大日利润是多少元?
我们定义:三边之比为1::的三角形叫神奇三角形.
(1)如图一,△ABC是正方形网格中的格点三角形,假设每个小正方形的边长为1,请证明△ABC是神奇三角形,并直接写出∠ABC的度数;
(2)请你在下列2×5的正方形网格中(图二)分别画出一个与(1)中△ABC不全等的大小各不同的格点神奇三角形.
如图,△ABC内接于⊙O,AC是⊙O直径,D是的中点,过点D作CB的垂线,分别交CB、CA延长线于点F、E.
(1)判断直线EF与⊙O的位置关系,并说明理由;
(2)若sinE=,求AB:EF的值.