满分5 > 初中数学试题 >

点P是矩形ABCD对角线AC所在直线上的一个动点(点P不与点A,C重合),分别过...

P是矩形ABCD对角线AC所在直线上的一个动点(点P不与点AC重合),分别过点AC向直线BP作垂线,垂足分别为点EF,点OAC的中点.

1)如图1,当点P与点O重合时,请你判断OEOF的数量关系;

2)当点P运动到如图2所示位置时,请你在图2中补全图形并通过证明判断(1)中的结论是否仍然成立;

3)若点P在射线OA上运动,恰好使得∠OEF30°时,猜想此时线段CFAEOE之间有怎样的数量关系,直接写出结论不必证明.

 

(1)OE=OF.理由见解析;(2)补全图形如图所示见解析,OE=OF仍然成立;(3)CF=OE+AE或CF=OE﹣AE. 【解析】 (1)根据矩形的性质以及垂线,即可判定,得出OE=OF; (2)先延长EO交CF于点G,通过判定,得出OG=OE,再根据中,,即可得到OE=OF; (3)根据点P在射线OA上运动,需要分两种情况进行讨论:当点P在线段OA上时,当点P在线段OA延长线上时,分别根据全等三角形的性质以及线段的和差关系进行推导计算即可. (1)OE=OF.理由如下: 如图1. ∵四边形ABCD是矩形,∴ OA=OC. ∵,,∴. ∵在和中,,∴,∴ OE=OF; (2)补全图形如图2,OE=OF仍然成立.证明如下: 延长EO交CF于点G. ∵,,∴ AE//CF,∴. 又∵点O为AC的中点,∴ AO=CO. 在和中,,∴,∴ OG=OE,∴中,,∴ OE=OF; (3)CF=OE+AE或CF=OE-AE. 证明如下:①如图2,当点P在线段OA上时. ∵,,∴,由(2)可得:OF=OG,∴是等边三角形,∴ FG=OF=OE,由(2)可得:,∴ CG=AE. 又∵ CF=GF+CG,∴ CF=OE+AE; ②如图3,当点P在线段OA延长线上时. ∵,,∴,同理可得:是等边三角形,∴ FG=OF=OE,同理可得:,∴ CG=AE. 又∵ CF=GF-CG,∴ CF=OE-AE.
复制答案
考点分析:
相关试题推荐

如图,Rt△AOB 在平面直角坐标系中,O与坐标原点重合,Ax轴上,By轴上,△AOB沿直线BE折叠,使得OB边落在AB,O与点D重合.

(1)求直线BE的解析式;

(2)求点D的坐标;

(3)x轴上是否存在点P,使△PAD为等腰三角形?若存在,请直接写出点P的坐标,若不存在,请说明理由。

 

查看答案

如图,在平行四边形ABCD中,以A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若弧EF的长为,求图中阴影部分的面积.

 

查看答案

某商场用2700元购进甲、乙两种商品共100件,这两种商品的进价、标价如下表所示:

甲种

乙种

进价(元/件)

15

35

标价(元/件)

20

45

 

 

 

 

 

 

 

(1)求购进两种商品各多少件?

(2)商品将两种商品全部卖出后,获得的利润是多少元?

 

查看答案

2017327日是全国中小学生安全教育日,某校为加强学生的安全意识,组织了全校学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整致,满分为10分) 进行统计,绘制了图中两幅不完整的统计图.

(1)a=_____,n=_____

(2)补全频数直方图;

(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?

 

查看答案

不透明的袋中装有3个大小相同的小球,其中两个为白色,一个为红色,随机地从袋中摸取一个小球后放回,再随机地摸取一个小球,(用列表或树形图求下列事件的概率)

(1)两次取的小球都是红球的概率;

(2)两次取的小球是一红一白的概率.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.