对于平面内的⊙C和⊙C外一点Q,给出如下定义:若过点Q的直线与⊙C存在公共点,记为点A,B,设,则称点A(或点B)是⊙C的“K相关依附点”,特别地,当点A和点B重合时,规定AQ=BQ,(或).
已知在平面直角坐标系xoy中,Q(-1,0),C(1,0),⊙C的半径为r.
(1)如图1,当时,
①若A1(0,1)是⊙C的“k相关依附点”,求k的值.
②A2(1+,0)是否为⊙C的“2相关依附点”.
(2)若⊙C上存在“k相关依附点”点M,
①当r=1,直线QM与⊙C相切时,求k的值.
②当时,求r的取值范围.
(3)若存在r的值使得直线与⊙C有公共点,且公共点时⊙C的“相关依附点”,直接写出b的取值范围.
如图,已知∠AOB=60°,点P为射线OA上的一个动点,过点P作PE⊥OB,交OB 于点E,点D在∠AOB内,且满足∠DPA=∠OPE,DP+PE=6.
(1)当DP=PE时,求DE的长;
(2)在点P的运动过程中,请判断是否存在一个定点M,使得的值不变?并证明你的判断.
在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+3a(a>0)与x轴交于A,B两点(A在B的左侧).
(1)求抛物线的对称轴及点A,B的坐标;
(2)点C(t,3)是抛物线y=ax2﹣4ax+3a(a>0)上一点,(点C在对称轴的右侧),过点C作x轴的垂线,垂足为点D.
①当CD=AD时,求此时抛物线的表达式;
②当CD>AD时,求t的取值范围.
如图,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,点P从点B出发,沿B→C→A以每秒1厘米的速度匀速运动到点A.设点P的运动时间为x秒,B、P两点间的距离为y厘米.
小新根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小新的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x(s) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
y(cm) | 0 | 1.0 | 2.0 | 3.0 | 2.7 | 2.7 | m | 3.6 |
经测量m的值是(保留一位小数).
(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC中画出点P所在的位置.
某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.
(1)按如下分数段整理、描述这两组数据:
成绩x
学生 | 70≤x≤74 | 75≤x≤79 | 80≤x≤84 | 85≤x≤89 | 90≤x≤94 | 95≤x≤100 |
甲 |
|
|
|
|
|
|
乙 | 1 | 1 | 4 | 2 | 1 | 1 |
(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:
学生 | 极差 | 平均数 | 中位数 | 众数 | 方差 |
甲 |
| 83.7 |
| 86 | 13.21 |
乙 | 24 | 83.7 | 82 |
| 46.21 |
(3)若从甲、乙两人中选择一人参加知识竞赛,你会选谁(填“甲”或“乙),理由是什么.
如图,AB为⊙O直径,过⊙O外的点D作DE⊥OA于点E,射线DC切⊙O于点C、交AB的延长线于点P,连接AC交DE于点F,作CH⊥AB于点H.
(1)求证:∠D=2∠A;
(2)若HB=2,cosD=,请求出AC的长.