满分5 > 初中数学试题 >

我们定义:如图1,在△ABC看,把AB点A顺时针旋转α(0°<α<180°)得到...

我们定义:如图1,在△ABC看,把ABA顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC旋补三角形”,AB'C'B'C'上的中线AD叫做△ABC旋补中线,点A叫做旋补中心”.

特例感知:

(1)在图2,图3中,△AB'C'是△ABC旋补三角形”,AD是△ABC旋补中线”.

①如图2,当△ABC为等边三角形时,ADBC的数量关系为AD=____BC;

②如图3,当∠BAC=90°,BC=8时,则AD长为____

猜想论证:

(2)在图1中,当△ABC为任意三角形时,猜想ADBC的数量关系,并给予证明.

 

(1)①;②4;(2)AD=BC,证明见解析 【解析】 试题(1)①首先证明△ADB′是含有30°是直角三角形,可得AD=AB′即可解决问题;②首先证明△BAC≌△B′AC′,根据直角三角形斜边中线定理即可解决问题; (2)如图1中,延长AD到Q,使得AD=DQ,连接B′Q,C′Q,根据∠QB′A=∠BAC,QB′=AC′=AC,AB′=AB,即可得到△AQB′≌△BAC,即可解决问题. 试题解析: 【解析】 (1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC; 理由:∵△ABC是等边三角形, ∴AB=BC=AC=AB′=AC′, ∵DB′=DC′, ∴AD⊥B′C′, ∵∠BAC=60°,∠BAC+∠B′AC′=180°, ∴∠B′AC′=120°, ∴∠B′=∠C′=30°, ∴AD=AB′=BC, 故答案为. ②如图3,当∠BAC=90°,BC=8时,则AD长为4. 理由:∵∠BAC=90°,∠BAC+∠B′AC′=180°, ∴∠B′AC′=∠BAC=90°, ∵AB=AB′,AC=AC′, ∴△BAC≌△B′AC′, ∴BC=B′C′, ∵B′D=DC′, ∴AD=B′C′=BC=4, 故答案为4. (2)猜想AD=BC. 证明:如图,延长AD至点Q,则△DQB'≌△DAC', ∴QB'=AC',QB'∥AC', ∴∠QB'A+∠B'AC'=180°, ∵∠BAC+∠B'AC'=180°, ∴∠QB'A=∠BAC, 又由题意得到QB'=AC'=AC,AB'=AB, ∴△AQB'≌△BCA, ∴AQ=BC=2AD, 即AD=BC.  
复制答案
考点分析:
相关试题推荐

某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.

(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?

(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?

(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?

 

查看答案

如图,AB为半圆O的直径,AC是O的一条弦,D为弧BC的中点,作DEAC于点E,交AB的延长线于点F,连接DA.

(1)求证:EF为半圆O的切线;

(2)若DA=DF=6,求弧BD的长.(结果保留π)

 

查看答案

如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点BBC⊥x轴,垂足为C,且SABC=5.

(1)求一次函数与反比例函数的解析式.

(2)根据所给条件,请直接写出不等式k1x+b>的解集;

(3)P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.

 

查看答案

如图,在△ABC中,DE分别是ABAC的中点,BE=2DE,延长DE到点F,使得EFBE,连CF

(1)求证:四边形BCFE是菱形;

(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.

 

查看答案

如图所示,△ABC中,∠B90°,AB6cmBC8cm

1)点P从点A开始沿AB边向B1cm/s的速度移动,点QB点开始沿BC边向点C2cm/s的速度移动.如果PQ分别从AB同时出发,经过几秒,使△PBQ的面积等于8cm2

2)点P从点A开始沿AB边向B1cm/s的速度移动,点QB点开始沿BC边向点C2cm/s的速度移动.如果PQ分别从AB同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.

3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,PQ同时出发,问几秒后,△PBQ的面积为1cm2

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.