满分5 > 初中数学试题 >

已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,...

已知,抛物线yax2+ax+b(a≠0)与直线y2x+m有一个公共点M(10),且ab

(1)ba的关系式和抛物线的顶点D坐标(a的代数式表示)

(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点GH关于原点对称,现将线段GH沿y轴向上平移t个单位(t0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

 

(1)b=﹣2a,顶点D的坐标为(﹣,﹣);(2);(3) 2≤t<. 【解析】 试题(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标; (2)把点代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a
复制答案
考点分析:
相关试题推荐

我们定义:如图1,在△ABC看,把ABA顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC旋补三角形”,AB'C'B'C'上的中线AD叫做△ABC旋补中线,点A叫做旋补中心”.

特例感知:

(1)在图2,图3中,△AB'C'是△ABC旋补三角形”,AD是△ABC旋补中线”.

①如图2,当△ABC为等边三角形时,ADBC的数量关系为AD=____BC;

②如图3,当∠BAC=90°,BC=8时,则AD长为____

猜想论证:

(2)在图1中,当△ABC为任意三角形时,猜想ADBC的数量关系,并给予证明.

 

查看答案

某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.

(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?

(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?

(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?

 

查看答案

如图,AB为半圆O的直径,AC是O的一条弦,D为弧BC的中点,作DEAC于点E,交AB的延长线于点F,连接DA.

(1)求证:EF为半圆O的切线;

(2)若DA=DF=6,求弧BD的长.(结果保留π)

 

查看答案

如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点BBC⊥x轴,垂足为C,且SABC=5.

(1)求一次函数与反比例函数的解析式.

(2)根据所给条件,请直接写出不等式k1x+b>的解集;

(3)P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.

 

查看答案

如图,在△ABC中,DE分别是ABAC的中点,BE=2DE,延长DE到点F,使得EFBE,连CF

(1)求证:四边形BCFE是菱形;

(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.

 

查看答案
试题属性
  • 题型:解答题
  • 难度:困难

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.