(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE.
(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明:若不成立,请说明理由.
计算
(1)(x+y)2-2x(x+y); (2)(a+1)(a-1)-(a-1)2;
(3)先化简,再求值:
(x+2y)(x-2y)-(2x3y-4x2y2)÷2xy,其中x=-3,.
如图,已知AB是⊙O的直径,CD是⊙O的切线,C为切点,且∠BAC=50°,则∠ACD=______°.
如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB′C′,连结B′C,则sin ∠ACB′=_______.
某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为_____度.
若函数y=2x+b(b为常数)的图象经过点A(0,﹣2),则b=_____.