如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)若点M是抛物线上在x轴下方的动点,过M作MN∥y轴交直线BC于点N,求线段MN的最大值;
(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.
某工厂去年的利润(总收入﹣总支出)为300万元,今年总收入比去年增加20%,总支出比去年减少10%,今年的利润为420万元,去年的总收入、总支出各是多少万元?
如图,⊙O的直径AB长为12,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.
(1)求证:AC平分∠DAB.
(2)设AD交⊙O于点M,当∠B=60°时,求弧AM的长.
图①、图②都是4×4的正方形网格,每个小正方形的顶点为格点,每个小正方形的边长均为1.在图①、图②中已画出线段AB,点A、B均在格点上按下列要求画图:
(1)在图①中,以格点为顶点,AB为腰,画一个三边长都是无理数的等腰三角形;
(2)在图②中,以格点为顶点,AB为底的等腰三角形.
车辆经过润扬大桥收费站时,4个收费通道 A.B、C、D中,可随机选择其中的一个通过.
(1)一辆车经过此收费站时,选择 A通道通过的概率是 ;
(2)求两辆车经过此收费站时,选择不同通道通过的概率.
(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE.
(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明:若不成立,请说明理由.