如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E.
(1)求抛物线的函数表达式;
(2)如图1,求线段DE长度的最大值;
(3)如图2,设AB的中点为F,连接CD,CF,是否存在点D,使得△CDE中有一个角与∠CFO相等?若存在,求点D的横坐标;若不存在,请说明理由.
如图,在中,,,点为延长线上一点,连接,过分别作,垂足为,交于点,作,垂足为,交于点.
(1)求证:;
(2)如图,点在的延长线上,且,连接并延长交于点,求证:;
(3)在(2)的条件下,当时,请直接写出的值为____________________.
如图,点都在反比例函数的图象上.
(1)求的值;
(2)如果为轴上一点,为轴上一点,以点为顶点的四边形是平行四边形,试求直线的函数表达式;
(3)将线段沿直线进行对折得到线段,且点始终在直线上,当线段与轴有交点时,则的取值范围为_______(直接写出答案)
如图,已知为外心,为上一点,与的交点为,且.
①求证:;
②若,且的半径为,为内心,求的长.
某校两次购买足球和篮球的支出情况如表:
(1)求购买一个足球、一个篮球的花费各需多少元?(请列方程组求解)
(2)学校准备给帮扶的贫困学校送足球、篮球共计60个,恰逢市场对两种球的价格进行了调整,足球售价提高了10%,篮球售价降低了10%,如果要求一次性购得这批球的总费用不超过4000元,那么最多可以购买多少个足球?
甲、乙两人5场10次投篮命中次数如图:
(1)根据图形填表:
(2)①教练根据这5个成绩,选择甲参加投篮比赛,理由是什么?
②如果乙再投篮1场,命中8次,那么乙的投篮成绩的方差将会怎样变化?(“变大”“变小”或“不变”)