在一个不透明的口袋中装有5张完全相同的卡片,卡片上面分别写有数字-2、-1、0、1、3,从中随机抽出一张卡片,卡片上面的数字是负数的概率为( )
A. 0.8 B. 0.6 C. 0.4 D. 0.2
下列图案中,可以看做是中心对称图形的有( )
A. 1个 B. 2个 C. 3个 D. 4个
如图所示的几何体的俯视图是( ).
A. B. C. D.
已知室内温度为3℃,室外温度为﹣3℃,则室内温度比室外温度高( )
A. 6℃ B. ﹣6℃ C. 0℃ D. 3℃
如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.
(1)求抛物线的解析式;
(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.
已知如图 1,在△ABC 中,∠ACB=90°,BC=AC,点 D 在 AB 上,DE⊥AB交 BC 于 E,点 F 是 AE 的中点
(1) 写出线段 FD 与线段 FC 的关系并证明;
(2) 如图 2,将△BDE 绕点 B 逆时针旋转α(0°<α<90°),其它条件不变,线段 FD 与线段 FC 的关系是否变化,写出你的结论并证明;
(3) 将△BDE 绕点 B 逆时针旋转一周,如果 BC=4,BE=2,直接写出线段 BF 的范围.