在平面直角坐标系xOy中,过原点O的直线l1与双曲线的一个交点为A(1,m).
(1)求直线l1的表达式;
(2)过动点P(n,0)(n>0)且垂直于x轴的直线与直线l1和双曲线的交点分别为B,C,当点B位于点C上方时,直接写出n的取值范围.
如图,在矩形ABCD中,连接对角线AC,BD,延长BC至点E,使BC=CE,连接DE.
求证:DE=AC.
解不等式组:
计算: +|1﹣|﹣2cos45°+()﹣1.
工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.这种做法的依据是___.
古代有这样一个数学问题:韩信点一队士兵人数,三人一组余两人,五人一组余三人,七人一组余四人.问这队士兵至少多少人?我国古代学者早就研究过这个问题.例如明朝数学家程大位在他著的《算法统宗》中就用四句口诀暗示了此题的解法:三人同行七十稀,五树梅花甘一枝,七子团圆正半,除百零五便得知.这四句口诀暗示的意思是:当除数分别是3,5,7时,用70乘以用3除的余数(例如:韩信点兵问题中用70乘以2),用21乘以用5除的余数,用15乘以用7除的余数,然后把三个乘积相加.加得的结果如果比105大就除以105,所得的余数就是满足题目要求的最小正整数解.按这四句口诀暗示的方法计算韩信点的这队士兵的人数为__.