如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为( )
A. 6.7×105 B. 6.7×106 C. 0.67×107 D. 67×108
在,,0,,这四个数中,最小的实数是
A. B. C. 0 D.
在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2),若x1x2+y1y2=0,且A,B均不为原点,则称A和B互为正交点.比如:A(1,1),B(2,﹣2),其中1×2+1×(﹣2)=0,那么A和B互为正交点.
(1)点P和Q互为正交点,P的坐标为(﹣2,3),
①如果Q的坐标为(6,m),那么m的值为多少;
②如果Q的坐标为(x,y),求y与x之间的关系式;
(2)点M和N互为正交点,直接写出∠MON的度数;
(3)点C,D是以(0,2)为圆心,半径为2的圆上的正交点,以线段CD为边,构造正方形CDEF,圆心F在正方形CDEF的外部,求线段OE长度的取值范围.
在等边三角形ABC中,E为直线AB上一点,连接EC.ED与直线BC交于点D,ED=EC.
(1)如图1,AB=1,点E是AB的中点,求BD的长;
(2)点E是AB边上任意一点(不与AB边的中点和端点重合),依题意,将图2补全,判断AE与BD间的数量关系并证明;
(3)点E不在线段AB上,请在图3中画出符合条件的一个图形.
在平面直角坐标系xOy中,抛物线y=x2-2mx+m2-m+2的顶点为D.线段AB的两个端点分别为A(-3,m),B(1,m).
(1)求点D的坐标(用含m的代数式表示);
(2)若该抛物线经过点B(1,m),求m的值;
(3)若线段AB与该抛物线只有一个公共点,结合函数的图象,求m的取值范围.