满分5 > 初中数学试题 >

已知四边形ABCD是矩形,连接AC,点E是边CB延长线上一点,CA=CE,连接A...

已知四边形ABCD是矩形,连接AC,点E是边CB延长线上一点,CA=CE,连接AE,F是线段AE的中点,

(1)如图1,当AD=DC时,连接CFABM,求证:BM=BE;

(2)如图2,连接BDACO,连接DF分别交AB、ACG、H,连接GC,若∠FDB=30°,S四边形GBOH=,求线段GC的长.

 

(1)见解析;(2) 【解析】(1)如图1,根据等腰三角形的三线合一得CF⊥AE,则∠AFC=90°,证明△AEB≌△CMB,可得BE=BM; (2)如图2,作辅助线构建三角形全等,先证明△AMF≌△EBF,得FM=BF,AM=BE,再证明△DMB是等腰三角形,由三线合一得:DF平分∠BDM,根据∠FDB=30°得△BDM是等边三角形;由此△ACE为等边三角形,△OHD为直角三角形,设未知数:OH=x,根据S四边形GBOH=S△DGB-S△OHD,列方程得出结论. (1)如图1,∵AC=EC,F是AE的中点, ∴CF⊥AE, ∴∠AFC=90°, ∵四边形ABCD是矩形,AD=DC, ∴矩形ABCD为正方形, ∴AB=BC,∠ABC=90°, ∴∠AFC=∠ABC, ∵∠AMF=∠BMC, ∴∠EAB=∠MCB, ∵∠ABE=∠ABC=90°, ∴△AEB≌△CMB, ∴BE=BM; (2)如图2,连接BF并延长交直线AD于M, ∵F是AE的中点, ∴AF=EF, ∵四边形ABCD是矩形, ∴AD∥BC,AC=BD, ∴∠M=∠FBE, ∵∠AFM=∠EFB, ∴△AMF≌△EBF, ∴FM=BF,AM=BE, ∵AD=BC, ∴AD+AM=BC+BE, 即DM=CE, ∵AC=CE, ∴EC=DM=AC=BD, ∴△DMB是等腰三角形, ∵F是BM的中点, ∴DF平分∠BDM, ∵∠BDF=30°, ∴∠BDM=60°, ∴△BDM是等边三角形, ∴∠M=60°, 在Rt△BCD中,∠BDC=90°﹣60°=30°, ∴∠DBC=60°, ∵OB=OC, ∴∠DBC=∠OCB=60°, ∴△ACE为等边三角形, 在△OHD中,∠HOD=∠BOC=60°, ∴∠OHD=90°, 设OH=x,则OD=2x,BD=4x,BC=2x, ∴DH=x,AH=x,DC=AB=2x, Rt△ABC中,∠ACE=60°, ∴∠BAC=30°, ∴cos30°=, AG==, ∴BG=AB﹣AG=2x﹣=, ∴S四边形GBOH=S△DGB﹣S△OHD, =BG•AD﹣OH•DH, =••2x﹣•x•x=, 解得:x2=9, x=±3, ∴BC=2x=6, BG=×3=4, 由勾股定理得:CG===2.
复制答案
考点分析:
相关试题推荐

如果实数 xy 满足方程组 ,那么代数式( +2)÷ 的值为      

 

查看答案

已知关于x的一元二次方程

求证:该方程必有两个实数根;

设方程的两个实数根分别是,若是关于x的函数,且,其中,求这个函数的解析式;

,若该一元二次方程只有整数根,且k是小于0的整数结合函数的图象回答:当自变量x满足什么条件时,

 

查看答案

某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为ABCD四个等级请根据两幅统计图中的信息回答下列问题:

本次抽样调查共抽取了多少名学生?

求测试结果为C等级的学生数,并补全条形图;

若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?

若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.

 

查看答案

如图,在中,直角边OAOB分别在x轴的负半轴和y轴的正半轴上,将绕点B逆时针旋转后,得到,且反比例函数的图象恰好经过斜边的中点C,若,则______

 

查看答案

如图六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形对角线,请在大长方形中完成下列画图,要求:仅用无刻度直尺;保留必要的画图痕迹.

在图中画一个角,使点A或点B是这个角的顶点,且AB为这个角的一边;

在图中画出线段AB的垂直平分线,并简要说明画图的方法不要求证明______

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.