满分5 > 初中数学试题 >

某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可...

某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.

(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?

(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?

(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?

 

(1)50+x﹣40=x+10(元); (2)要使进货量较少,则每个定价为70元,应进货200个; (3)每个定价为65元时得最大利润,可获得的最大利润是6250元. 【解析】 试题分析:(1)根据利润=销售价-进价列关系式,(2)总利润=每个的利润×销售量,销售量为400-10x,列方程求解,根据题意取舍,(3)利用函数的性质求最值. 试题解析:由题意得:(1)50+x-40=x+10(元), (2)设每个定价增加x元, 列出方程为:(x+10)(400-10x)=6000,解得:x1=10,x2=20,要使进货量较少,则每个定价为70元,应进货200个, (3)设每个定价增加x元,获得利润为y元, y=(x+10)(400-10x)=-10x2+300x+4000=-10(x-15)2+6250,当x=15时,y有最大值为6250,所以每个定价为65元时得最大利润,可获得的最大利润是6250元.  
复制答案
考点分析:
相关试题推荐

某校九年级的小红同学,在自己家附近进行测量一座楼房高度的实践活动.如图,她在山坡坡脚A出测得这座楼房的楼顶B点的仰角为60°,沿山坡往上走到C处再测得B点的仰角为45°.已知OA=200m,此山坡的坡比i=,且OAD在同一条直线上.

1)求楼房OB的高度;

2)求小红在山坡上走过的距离AC.(计算过程和结果均不取近似值)

 

查看答案

已知四边形ABCD是矩形,连接AC,点E是边CB延长线上一点,CA=CE,连接AE,F是线段AE的中点,

(1)如图1,当AD=DC时,连接CFABM,求证:BM=BE;

(2)如图2,连接BDACO,连接DF分别交AB、ACG、H,连接GC,若∠FDB=30°,S四边形GBOH=,求线段GC的长.

 

查看答案

如果实数 xy 满足方程组 ,那么代数式( +2)÷ 的值为      

 

查看答案

已知关于x的一元二次方程

求证:该方程必有两个实数根;

设方程的两个实数根分别是,若是关于x的函数,且,其中,求这个函数的解析式;

,若该一元二次方程只有整数根,且k是小于0的整数结合函数的图象回答:当自变量x满足什么条件时,

 

查看答案

某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为ABCD四个等级请根据两幅统计图中的信息回答下列问题:

本次抽样调查共抽取了多少名学生?

求测试结果为C等级的学生数,并补全条形图;

若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?

若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.