如图1,在平面直角坐标系中,一次函数的图象与x轴,y轴分别交于点A,点C,过点A作轴,垂足为点A,过点C作轴,垂足为点C,两条垂线相交于点B.
线段AB,BC,AC的长分别为______,______,______;
折叠图1中的,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.
请从下列A、B两题中任选一题作答,我选择______题
A:求线段AD的长;
在y轴上,是否存在点P,使得为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.
B:求线段DE的长;
在坐标平面内,是否存在点除点B外,使得以点A,P,C为顶点的三角形与全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.
(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?
(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?
(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?
某校九年级的小红同学,在自己家附近进行测量一座楼房高度的实践活动.如图,她在山坡坡脚A出测得这座楼房的楼顶B点的仰角为60°,沿山坡往上走到C处再测得B点的仰角为45°.已知OA=200m,此山坡的坡比i=,且O、A、D在同一条直线上.
(1)求楼房OB的高度;
(2)求小红在山坡上走过的距离AC.(计算过程和结果均不取近似值)
已知四边形ABCD是矩形,连接AC,点E是边CB延长线上一点,CA=CE,连接AE,F是线段AE的中点,
(1)如图1,当AD=DC时,连接CF交AB于M,求证:BM=BE;
(2)如图2,连接BD交AC于O,连接DF分别交AB、AC于G、H,连接GC,若∠FDB=30°,S四边形GBOH=,求线段GC的长.
如果实数 x,y 满足方程组 ,那么代数式( +2)÷ 的值为 .
已知关于x的一元二次方程.
求证:该方程必有两个实数根;
设方程的两个实数根分别是,,若是关于x的函数,且,其中,求这个函数的解析式;
设,若该一元二次方程只有整数根,且k是小于0的整数结合函数的图象回答:当自变量x满足什么条件时,?