满分5 > 初中数学试题 >

已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一块等腰直角三角板的直...

已知RtABC中,∠ACB90°,CACB4,另有一块等腰直角三角板的直角顶点放在C处,CPCQ2,将三角板CPQ绕点C旋转(保持点P在△ABC内部),连接APBPBQ

1)如图1求证:APBQ

2)如图2当三角板CPQ绕点C旋转到点APQ在同一直线时,求AP的长;

3)设射线AP与射线BQ相交于点E,连接EC,写出旋转过程中EPEQEC之间的数量关系.

 

(1)证明见解析(2) (3)EP+EQ= EC 【解析】 (1)由题意可得:∠ACP=∠BCQ,即可证△ACP≌△BCQ,可得 AP=CQ; 作 CH⊥PQ 于 H,由题意可求 PQ=2 ,可得 CH=,根据勾股定理可求 AH= ,即可求 AP 的长; 作 CM⊥BQ 于 M,CN⊥EP 于 N,设 BC 交 AE 于 O,由题意可证△CNP≌△ CMQ,可得 CN=CM,QM=PN,即可证 Rt△CEM≌Rt△CEN,EN=EM,∠CEM= ∠CEN=45°,则可求得 EP、EQ、EC 之间的数量关系. 【解析】 (1)如图 1 中,∵∠ACB=∠PCQ=90°, ∴∠ACP=∠BCQ 且 AC=BC,CP=CQ ∴△ACP≌△BCQ(SAS) ∴PA=BQ 如图 2 中,作 CH⊥PQ 于 H ∵A、P、Q 共线,PC=2, ∴PQ=2, ∵PC=CQ,CH⊥PQ ∴CH=PH= 在 Rt△ACH 中,AH== ∴PA=AH﹣PH= - 【解析】 结论:EP+EQ= EC 理由:如图 3 中,作 CM⊥BQ 于 M,CN⊥EP 于 N,设 BC 交 AE 于 O. ∵△ACP≌△BCQ, ∴∠CAO=∠OBE, ∵∠AOC=∠BOE, ∴∠OEB=∠ACO=90°, ∵∠M=∠CNE=∠MEN=90°, ∴∠MCN=∠PCQ=90°, ∴∠PCN=∠QCM, ∵PC=CQ,∠CNP=∠M=90°, ∴△CNP≌△CMQ(AAS), ∴CN=CM,QM=PN, ∴CE=CE, ∴Rt△CEM≌Rt△CEN(HL), ∴EN=EM,∠CEM=∠CEN=45° ∴EP+EQ=EN+PN+EM﹣MQ=2EN,EC=EN, ∴EP+EQ=EC
复制答案
考点分析:
相关试题推荐

在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m长的篱笆围成一个矩形花园ABCD(篱笆只围ABBC两边),设ABxm

(1)若花园的面积为252m2,求x的值;

(2)若在P处有一棵树与墙CDAD的距离分别是17m6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.

 

查看答案

如图,OAOD是⊙O半径.过A作⊙O的切线,交∠AOD的平分线于点C,连接CD,延长AO交⊙O于点E,交CD的延长线于点B

(1)求证:直线CD是⊙O的切线;

(2)如果D点是BC的中点,⊙O的半径为 3cm,求的长度.(结果保留π)

 

查看答案

如图,一次函数ykx+b的图象与反比例函数y的图象交于AB两点.

1)利用图中的条件,求反比例函数和一次函数的解析式.

2)求△AOB的面积.

3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.

 

查看答案

如图,在RtABC中,∠B90°,AC40cm,∠A60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点DE运动的时间是t秒(0t10),过点DDFBC于点F,连接DEEF

1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;

2)当t为何值时,△DEF为直角三角形?请说明理由.

 

查看答案

如图,在RtABC中,∠C90°,BC6cmAC8cm,点P从点C开始沿射线CA方向以1cm/s的速度运动;同时,点Q也从点C开始沿射线CB方向以3cm/s的速度运动.

1)几秒后△PCQ的面积为3cm2?此时PQ的长是多少?(结果用最简二次根式表示)

2)几秒后以ABPQ为顶点的四边形的面积为22cm2

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.