满分5 > 初中数学试题 >

如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0). (...

如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).

(1)求该抛物线所对应的函数解析式;

(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.

①求四边形ACFD的面积;

②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.

 

(1)y=﹣x2+2x+3;(2)①S四边形ACFD= 4;②Q点坐标为(1,4)或(,)或(,). 【解析】 此题涉及的知识点是抛物线的综合应用,难度较大,需要有很好的逻辑思维,解题时先根据已知点的坐标列方程求出函数解析式,然后再根据解析式和已知条件求出四边形的面积和点的坐标。 (1)由题意可得,解得, ∴抛物线解析式为y=﹣x2+2x+3; (2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4, ∴F(1,4), ∵C(0,3),D(2,3), ∴CD=2,且CD∥x轴, ∵A(﹣1,0), ∴S四边形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4; ②∵点P在线段AB上, ∴∠DAQ不可能为直角, ∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°, i.当∠ADQ=90°时,则DQ⊥AD, ∵A(﹣1,0),D(2,3), ∴直线AD解析式为y=x+1, ∴可设直线DQ解析式为y=﹣x+b′, 把D(2,3)代入可求得b′=5, ∴直线DQ解析式为y=﹣x+5, 联立直线DQ和抛物线解析式可得,解得或, ∴Q(1,4); ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3), 设直线AQ的解析式为y=k1x+b1, 把A、Q坐标代入可得,解得k1=﹣(t﹣3), 设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t, ∵AQ⊥DQ, ∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=, 当t=时,﹣t2+2t+3=, 当t=时,﹣t2+2t+3=, ∴Q点坐标为(,)或(,); 综上可知Q点坐标为(1,4)或(,)或(,).
复制答案
考点分析:
相关试题推荐

已知RtABC中,∠ACB90°,CACB4,另有一块等腰直角三角板的直角顶点放在C处,CPCQ2,将三角板CPQ绕点C旋转(保持点P在△ABC内部),连接APBPBQ

1)如图1求证:APBQ

2)如图2当三角板CPQ绕点C旋转到点APQ在同一直线时,求AP的长;

3)设射线AP与射线BQ相交于点E,连接EC,写出旋转过程中EPEQEC之间的数量关系.

 

查看答案

在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m长的篱笆围成一个矩形花园ABCD(篱笆只围ABBC两边),设ABxm

(1)若花园的面积为252m2,求x的值;

(2)若在P处有一棵树与墙CDAD的距离分别是17m6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.

 

查看答案

如图,OAOD是⊙O半径.过A作⊙O的切线,交∠AOD的平分线于点C,连接CD,延长AO交⊙O于点E,交CD的延长线于点B

(1)求证:直线CD是⊙O的切线;

(2)如果D点是BC的中点,⊙O的半径为 3cm,求的长度.(结果保留π)

 

查看答案

如图,一次函数ykx+b的图象与反比例函数y的图象交于AB两点.

1)利用图中的条件,求反比例函数和一次函数的解析式.

2)求△AOB的面积.

3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.

 

查看答案

如图,在RtABC中,∠B90°,AC40cm,∠A60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点DE运动的时间是t秒(0t10),过点DDFBC于点F,连接DEEF

1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;

2)当t为何值时,△DEF为直角三角形?请说明理由.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.