综合与实践--------图形变换中的数学问题
问题情境:
如图1,已知矩形中,点是的中点,连接.将矩形沿剪开,得到四边形和四边形.
(1)求证:四边形是矩形;
操作探究:
保持矩形位置不变,将矩形从图1的位置开始,绕点按逆时针方向旋转,设旋转角为().操作中,提出了如下向题,请你解答:
(2)如图2,当矩形旋转到点落在线段上时,线段恰好经过点,设与相交于点.判断四边形的形状,并说明理由;
(3)请从两题中任选一题作答,我选择题.
A.在矩形旋转过程中,连接线段和.当时,直接写出旋转角的度数.
B.已知矩形中,.在矩形旋转过程中,连接线段和,当时,直接写出的长.
社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.
(1)求通道的宽是多少米?
(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?
已知:如图,是正方形的对角线上的两点,且.
求证:四边形是菱形.
一天晚上,哥哥和弟弟拿两根等长的标杆直立在一盏亮着的路灯下,然后调整标杆位置,使它们在该路灯下的影子恰好在一条直线上(如图所示).
(1)请在图中画出路灯灯泡的位置;
(2)哥哥和弟弟测得如下数据:米,米,米,两根标杆的距离 米,且.请你根据以上信息计算灯泡距离地面的高度.
《城镇污水处理厂污染物排放标准》中硫化物的排放标准为.某污水处理厂在自查中发现,所排污水中硫化物浓度超标,因此立即整改,并开始实时监测.据监测,整改开始第60小时时,所排污水中硫化物的浓度为;从第60小时开始,所排污水中硫化物的浓度是监测时间(小时)的反比例函数,其图象如图所示。
(1)求与的函数关系式;
(2)整改开始第100小时时,所排污水中硫化物浓度为_____;
(3)按规定所排污水中硫化物的浓度不超过时,才能解除实时监测,此次整改实时监测的时间至少为多少小时?
新年游园会中有一款电子飞镖的游戏. 如图,靶被等分成2个区域,分别涂上红色和蓝色,靶被等分成3个区域,分别涂上红色、蓝色、和白色. 小彬向靶、小颖向靶分别投掷一枚电子飞镖,飞镖随机落在靶盘的某一位置,若两枚飞镖命中部分的颜色恰好配成紫色,小彬获得奖品,否则,小颖获得奖品(若飞镖落在边界线上时,重投一次,直到落在某一区域).这个游戏公平吗?说明理由.