如图①,Rt△ABC中,∠ABC=90°,∠CAB的平分线交BC于点O,以O为圆心,OB长为半径作⊙O.
(1)求证:⊙O与AC相切.
(2)若AB=6,AC=10.
①求⊙O的半径;
②如图②,延长AO交⊙O于点D,过点D作⊙O的切线,分别交AC、AB的延长线于E、F,试求EF的长.
行驶中的汽车,在刹车后由于惯性的作用,还要向前方滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号的汽车的刹车性能(车速不超过140 km/h),对这种汽车进行测试,测得数据如下表:
刹车时车速/km·h-1 | 0 | 10 | 20 | 30 | 40 | 50 | 60 |
刹车距离/m | 0 | 0.3 | 1.0 | 2.1 | 3.6 | 5.5 | 7.8 |
(1)以车速为x轴,以刹车距离为y轴,建立平面直角坐标系,根据上表对应值作出函数的大致图象;
(2)观察图象.估计函数的类型,并确定一个满足这些数据的函数解析式;
(3)该型号汽车在国道发生了一次交通事故,现场测得刹车距离为46.5 m,推测刹车时的车速是多少?请问事故发生时,汽车是超速行驶还是正常行驶?
如图1,有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.
(1)拼成的正方形的面积是 ,边长是 .
(2)把10个小正方形组成的图形纸(如图2),剪开并拼成正方形.
①请在4×4方格图内画出这个正方形.
②以小正方形的边长为单位长度画一条数轴,并在数轴上画出表示-的点.
(3)这种研究和解决问题的方式,主要体现了 的数学思想方法.
A.数形结合 B.代入 C.换元 D.归纳
某手机生产厂家根据其产品在市场上的销售情况,决定对原来以每部2000元出售的一款彩屏手机进行调价,并按新单价的八折优惠出售,结果每部手机仍可获得实际销售价的20%的利润(利润=销售价—成本价).已知该款手机每部成本价是原销售单价的60%.
(1)求调整后这款彩屏手机的新单价是每部多少元?让利后的实际销售价是每部多少元?
(2)为使今年按新单价让利销售的利润不低于20万元,今年至少应销售这款彩屏手机多少部?
“三等分一个角”是数学史上一个著名问题,今天人们已经知道,仅用圆规和直尺是不可能作出的.在探索中,有人曾利用过如下的图形.其中,四边形ABCD是矩形,F是DA延长线上一点,G是CF上一点,并且∠ACG=∠AGC,∠GAF= ∠F,你能证明∠ECB=∠ACB吗?
已知是方程的一个根,求的值和方程其余的根.