已知△ABC内接于以AB为直径的⊙O,过点C作⊙O的切线交BA的延长线于点D,且DA∶AB=1∶2.
(1)求∠CDB的度数;
(2)在切线DC上截取CE=CD,连接EB,判断直线EB与⊙O的位置关系,并证明.
某商店以15元/件的价格购进一批纪念品销售,经过市场调查发现:若每件卖20元,则每天可以售出50件,且售价每提高1元,每天的销量会减少2件,于是该商店决定提价销售,设售价x元件,每天获利y元.
(1)求每件售价为多少元时,每天获得的利润最大?最大利润是多少?
(2)若该商店雇用人员销售,在营销之前,对支付给销售人员的工资有如下两种方案:
方案一:每天支付销售工资100元,无提成;
方案二:每销售一件提成2元,不再支付销售工资.
综合以上所有信息,请你帮着该商店老板算一算,应该采用哪种支付方案,才能使该商店每天销售该纪念品的利润最大?最大利润是多少?
如图:007渔船在南海海面上沿正东方向匀速航行,在A点观测到渔船C在北偏东60°方向的我国某传统渔场捕鱼作业.若007渔船航向不变,航行半小时后到达B点,观测到渔船C在东北方向上.问:007渔船再按原航向航行多长时间,离渔船C的距离最近?
如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.
(1)求证:四边形BEDF为菱形;
(2)如果∠A=90°,∠C=30°,BD=6,求菱形BEDF的面积.
某中学在参加“创文明城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用 A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:
(l)杨老师采用的调查方式是 (填“普查”或“抽样调查”);
(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数 .
(3)请估计全校共征集作品的件数.
(4)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.
先化简,再求值:,其中.